

Series 388/389 Custom Potentiometer

36 ROUTE 10, STE 6 • EAST HANOVER • NEW JERSEY • 07936
Phone 973-887-2550 • Toll Free 1-800-631-8083 • Fax 973-887-1940
Internet http://www.potentiometers.com

POT
 PROTOTYPES

Now almost any special combination potentiometer you specify can be manufactured and shipped soon after your order is received.

Since Mod Pot potentiometers are modular in construction, we can produce prototype quantities of $1 / 2$ or $5 / 8$ inch square, conductive plastic, cermet, or hot molded carbon pots for you in just a few hours and even production quantities in a matter of days with our VIP (Very Important Potentiometer) service!

Over one billion combinations of single, dual, triple, quad arrangements, push-pull or rotary switches and hundreds of shaft terminal variations can be produced.

If you need a potentiometer and you need it fast, call our product manager or fax us your requirements using the Custom Potentiometer Order Form WHY WAIT? included in this catalog.

Series 388 Potentiometer

Conductive Plastic - $1 / 2$ inch square; .5 Watt

Series 389 Potentiometer

Cermet - $1 / 2$ inch square; 1 Watt

Description

The 388 and 389 series are $1 / 2 \mathrm{in}$. square, modular, stackable potentiometers. The basic construction suits the series for countless design options.
The 388 and 389 series can be found in a wide range of sophisticated systems in a broad scope of industries.

Features

- Small size- $1 / 2$ in. square
- Stackable - up to 8 modules
- Switches - rotary, push-pull, push-momentary, and schadow.
- Versatility - various shaft, bushings, terminal styles, resistance values, tapers and tolerances. Available in Conductive Plastic or Thick Film Cermet

- RoHS Compliant

Special Features

- Detents - Center detent and 11 position detents available
- Seals - mounting and shaft seals
- Medium torque-1 to 6 oz . in.

	Operational Specifications Series 388	Operational Specifications Series 389
Resistance Range	Linear: 100 ohm to 5 Megohm Tapered: 500 ohm to 1 Megohm See chart, page 7	Linear: 50 ohm to 5 Megohm Tapered: 100 ohm to 1 Megohm See chart, page 7
Resistance Tolerance	Linear: thru 500 K ohm,$\pm 10 \%$; above 500 K ohm,$\pm 20 \%$. Tapered: thru 100 K ohm,$\pm 10 \%$; above 100 K ohm $\pm 20 \%$	Linear: $\pm 10 \% ; \pm 20 \%$ special Tapered: $\pm 10 \%$ Under 20 ohm $\pm 20 \%$
Taper	See Taper Curve charts on page 6 for standard and special tapers available	See Taper Curve charts on page 6 for standard and special tapers available
Taper Tolerance	$\pm 20 \%$ of nominal resistance at 50% $\pm 3 \%$ mechanical rotation	$\pm 20 \%$ of nominal resistance at 50% mechanical rotation
Independent Linearity	$\pm 5 \%$ standard with specials available	$\pm 5 \%$ standard with specials available
End Resistance	4 ohms max. each end linear and low side of taper. 1\% of total R high side of taper.	2 ohms max. each end (5 ohms - 2.5 K ohms) 4 ohms max. each end (above 2.5K)
Dynamic Noise (C.R.V.)	1.5\% of total R, standard linear; 1.0% of total R, special linear; 2.2% of total R, tapered.	3.0\% of total R, standard linear; 1.5% of total R, special linear (500 ohms and above); 6.0% of total R, tapered.
Static Noise	Up to 30 K ohms - 20db; 100K ohms - 12 db ; 1 Megohms +3db	Up to 100 ohms - 25 db ; 10K ohms - 15 db ; 100K ohms -10db.

	Operational Specifications Series 388
Power Rating	0.5 Watt @ $70^{\circ} \mathrm{C}$ bushing mounting 0.25 Watt @ $70^{\circ} \mathrm{C}$ PC mounting. Derate to 0 watts at $120^{\circ} \mathrm{C}$. derate 50% for non-linear tapers and derate multiple sections $1 / 2$ wattage of panel unit.
Working Voltage	350 Vdc across end terminals, but power not to exceed rating.
Dielectric Withstanding Voltage (Glossary Definition Link)	750 VAC @ ATM pressure -760mm Mercury, equivalent to sea level. 350 VAC @ 3.4 in. - 86.36 mm Mercury, equivalent to 50,000 feet.
Insulation Resistance	1000 Megohms minimum for dry, clean conditions @ $25^{\circ} \mathrm{C}$
Temperature Coefficient	See Temperature Resistance Change table on page 7
Tracking	10% voltage ratio tracking between sections standard. Specials available.
Electrical Rotation	$295^{\circ} \pm 5^{\circ}$
Effective Rotation	$265^{\circ} \pm 5^{\circ}$ without switch; $240^{\circ} \pm 5^{\circ}$ with switch.
Load Life	10% maximum change in resistance and within end resistance limits with rated power across element, at $70^{\circ} \mathrm{C}$ ambient temperature. Power applied 1.5 hours "on" 0.5 hours "off" for 1000 hours.
Rotational Life	Potentiometer: 10\% maximum resistance change up to 25,000 cycles under load. Rotary Switch: 15,000 cycles of operation Trimmer: 5,000 cycles
Low Temperature Operation	Less than 3% change in total R. Operating torque at $-40^{\circ} \mathrm{C}$ is 30 oz . in.
Rotary Switch	SPDT, 125MA @ 30VDC, CCW or CW Detent
Push-Pull or Push-Momentary Switch	DPST, N.O-N.C, 250MA @ 30VDC SPDT if common is cross-wired

Operational Specifications Series 389

1.0 Watt @ $85^{\circ} \mathrm{C}$ bushing mounting 0.5 Watt @ $85^{\circ} \mathrm{C}$ PC mounting.

Derate to 0 watts at $150^{\circ} \mathrm{C}$.
derate 50% for non-linear tapers and derate multiple sections $1 / 2$ wattage of panel unit.

350 Vdc across end terminals, but power not to exceed rating.

750 VAC @ ATM pressure - 760mm Mercury, equivalent to sea level
350 VAC @ 3.4 in. 86.36 mm Mercury, equivalent to 50,000 feet.
900 VAC single standard module
1000 Megohms minimum for dry, clean conditions @ $25^{\circ} \mathrm{C}$

15 ohms to 100 ohms $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. 100 ohms to 5 Megohms $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
10% voltage ratio tracking between sections standard. Specials available.
$295^{\circ} \pm 5^{\circ}$
$250^{\circ}+10^{\circ}-5^{\circ}$ without switch;
$225^{\circ}+10^{\circ}-5^{\circ}$ with switch.
5\% maximum change in resistance and within end resistance limits with rated power across element, at $85^{\circ} \mathrm{C}$ ambient temperature. Power applied 1.5 hours "on" 0.5 hours "off" for 1000 hours.

Potentiometer: 10\% maximum resistance change up to 25,000 cycles under load. Rotary Switch: 15,000 cycles of operation Trimmer: 5,000 cycles

Less than 2% change in total R. Operating torque at $-40^{\circ} \mathrm{C}$ is 30 oz . in.

SPDT, 125MA @ 30VDC, CCW or CW Detent
DPST, N.O-N.C, 250MA @ 30VDC
SPDT if common is cross-wired

Environmental Specifications Series 388

MIL-R-94 Standard

Low Temperature Storage
Thermal Cycling

Moisture Resistance

Solderability

Shock

Vibration, High Frequency

Series 388 is designed to meet MIL-R-94 performance characteristics where applicable

Less than 2\% change in total resistance
Less than 4% total R change as a result of 5 cycles @ $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
10% maximum total R change when tested per method 103 of MIL-STD-202
Meet the requirements of MIL-STD-202, Method 210, Condition A except immersed within .125 inch of element for 5 seconds.

The total resistance setting change is 2% maximum between left and right terminals and 5% maximum between CCW terminal and center terminal when tested per method 213 condition I of MIL-STD-202.Applicable to single shaft potentiometers only.

No intermittent contacts or open circuits when tested per method 204 Condition C of MIL-STD-202. Resistance setting change is 5\% maximum between left (CCW) terminal and center terminal. The total resistance change is 2% maximum between left and right terminals. Applicable to single shaft potentiometers only.
Units may be adversely affected if subjected to conventional after-solder board-wash

Environmental Specifications Series 389

Series 389 is designed to meet MIL-R-94 and MIL-R-22097 performance characteristics where applicable

Less than 2\% change in total resistance
Less than 3\% total R change as a result of 5 cycles @ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5\% maximum total R change when tested per method 103 of MIL-STD-202
Meet the requirements of MIL-STD-202, Method 210, Condition A except immersed within .125 inch of element for 5 seconds.

The total resistance setting change is 2% maximum between left and right terminals and 5% maximum between CCW terminal and center terminal when tested per method 213 condition I of MIL-STD-202. Applicable to single shaft potentiometers only.

No intermittent contacts or open circuits when tested per method 204 Condition C of MIL-STD-202. Resistance setting change is 5\% maximum between left (CCW) terminal and center terminal. The total resistance change is 2% maximum between left and right terminals. Applicable to single shaft potentiometers only.
Units may be adversely affected if subjected to conventional after-solder board-wash

Mechanical Specifications - Series 388 \& Series 389

Body Size

Single module: . 5 in . square $\pm .047 \mathrm{in}$. (except at standoffs)

Terminals

Printed circuit style on 0.100 in . grid in line, 0.250 in . long. Maximum PC terminal length: .875 in.
Terminal spacing in multiple section controls: 0.300 in.. Solder lugs formed from PC pins to accept 3 - \#22 AWG wires.

Housing

Molded thermoplastic

Anti-turn Device

Location 1 supplied unless otherwise specified. See Chart D.
Anti-turn Device radius: 6.35 mm .

Shafts

Single shaft: $1 / 8$ in. or $1 / 4 \mathrm{in}$. dia. Nickel-plated brass. Outer Concentric Shaft: $1 / 8 \mathrm{in}$. dia. Stainless Steel. Inner Concentric Shaft: 0.078 in. dia. Nickel-plated brass.

Seals

Mounting seal and shaft seal for single shafts only. Caution: These seals are not designed to meet board washing requirements.

Bushing Diameter

1/4 in. x 32NEF-2A standard $3 / 8 \mathrm{in}$. x 32NEF-2A optional When using $3 / 8$ in. diameter bushing, distance from mounting surface to PC terminals is .170 in . See page 8.

Bushing Length

Plain: 1/4 in. , $3 / 8$ in. , or $1 / 2$ in
Split-locking style: 3/8 in.

Rotational Torque

Single and dual concentric controls: 0.2 to 3.0 oz . in. Two Modules: 0.3 to 3.5 oz . in. Three Modules: 0.5 to 4.5 oz . in. Four Modules: 0.5 to 5.5 oz . in. Medium Torque Option for single shaft only: 1 to 6 oz. in. Torque Variation within a rotation: 1 oz . in. max.

Stop Torque

Single shaft: $3 \mathrm{lb} . \mathrm{in}$. (standard)
High Stop Torque: $5 \mathrm{lb} . \mathrm{in} .1 / 8 \mathrm{~s}$ shaft with O-ring 8 lb . in. $1 / 4^{\prime \prime}$ or $1 / 8^{\prime \prime}$ shaft without O-Ring

Actuating Forces

Pot/BJ Switch: 10-22 oz.; Dual Pot/BJ Switch: 10-25 oz.; Pot/BJM Switch: 25-40 oz.; Pot/Pot/BJM Switch: 25-43 oz.

Mechanical Rotation

With or without switch: $295^{\circ} \pm 5^{\circ}$.

Maximum Shaft Pull Force

.125 in. diameter shaft: 18 lbs (20 lbs Option)
.250in. diameter shaft: 10 lbs (20 lbs Option)
Concentric Front \& Rear Shaft: 7.5 lbs .
AJ rotary and BJ Push-Pull Switches: 10 lbs (20 lbs Option)
BJ Push-Pull or BJM Momentary Switches: 20 lbs.
Shaft Radial Play (single shaft potentiometer)
.028 in. maximum 1 in. from mounting surface with .250 in diameter bushing

Shaft End Play

. 020 in. maximum

Mounting Torque

Torque applied to the mounting nuts should not exceed 15 to 18 inch-pounds (1.7 to $2.0 \mathrm{~N}-\mathrm{m}$) for the .375 inch ($9,52 \mathrm{~mm}$) diameter bushing.

Standard Taper Curves

" S " Taper is linear, the change in resistance value being directly proportional to the degree of rotation. It can be used either as right-hand or left-hand taper.
"Z" Taper is measured between the wiper and the counter-clockwise terminals (pin 1 and 2) attains 10\% resistance value at 50% of clockwise rotation (left hand).
"Reverse Z" Taper is measured between the wiper and the clockwise terminals (pin 2 and 3) attains 10\% resistance value at 50% of counter-clockwise rotation (right hand).

For conformity and special output curves, consult State Electronics.

Tap Terminal Strength

18 lbs . maximum pull

Hardware

Mounting Hardware available as the following:
A. Hex mounting nut $1 / 4 \mathrm{in}$. $x 32$ thread, $5 / 16$ in. across flats, $1 / 16$ in. thick.
B. Internal tooth lockwasher 13/32 in. OD x .025 in. thick.
C. Jam hex nut $5 / 16$ in. across flats, $5 / 32$ in. thick supplied with locking type bushings.

Marking

Consisting of State Electronics part number.
Customer part number optional.

Special Taper Curves

"W" Taper attains 20\% resistance value at 50\% of clockwise rotation (left-hand).
"V" Taper attains 20\% resistance value at 50\% of counterclockwise rotation (right-handed).
"T" Taper attains 30\% resistance value at 50% of clockwise rotation (left-hand).
"Reverse T"Taper attains 30\% resistance value at 50\% of counterclockwise rotation (right hand).
"M"Taper is such that a "W" taper is attained from either the 1 or 3 terminal to the center of the element.

Standard Resistance Values

Disclaimer

Due to the unlimited design combinations, certain designs may not perform in accordance with all of the specifications

Temperature Resistance Change

Nominal Resistance	Maximum Percent Temporary Resistance Change From $\mathbf{2 5}^{\circ}$						
	$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+105^{\circ} \mathrm{C}$	$+120^{\circ} \mathrm{C}$
$\mathbf{1 0 0}$ Ohms	± 5.0	± 4.0	± 1.5	0	± 1.5	± 2.0	± 3.5
10K Ohms	+7.0	+5.5	+2.0	0	± 1.5	± 2.5	± 5.5
100K Ohms	+8.0	+6.0	+2.5	0	± 2.0	± 3.5	± 6.0
1 Megohm	+10.0	+8.0	+3.0	0	± 2.5	± 4.0	± 7.5

Note: For non-linear tapers, multiply chart values by 1.25

Locating Tab Options

Series 388 Locating Lug Style:

Tab width: .091"
Tab Height: . $041 \pm .005^{\prime \prime}$ FMS
Spacing: .250"
Option Number
1 = one tab - at 9 o'clock (standard)
2 = one tab - at 3 o'clock
3 = one tab - at 12 o'clock
4 = one tab - at 6 o'clock
5 = two tabs - at 3 and 9 o'clock
$6=$ two tabs - at 6 and 12 o'clock
7 = No Locating Lug

NOTE: Slots are recommended for the locating tab(s) when using $3 / 8$ " diameter bushings because of clearance issues,

Potentiometer Schematic
Figure 3

Series 388/389 Bushings

Figure 6
.250 (6.35 mm) Diameter Bushing, Plain Shaft

Figure 7
. 375 (9.53 mm) Diameter Bushing, Plain Shaft

Switch Modules

Figure 4
Series AJ Switch: Rotary Style

Figure 8
.250 (6.35mm) Diameter, Locking Bushing

Figure 9
.375 (9.53mm) Diameter, Locking Bushing

Figure 10
. 125 (3.18mm) Diameter - Slotted Shaft

Figure 12

. 250 (6.35 mm) Diameter, Flatted Shaft

Flat is Opposite Movable Contact

Flat can extend to within $.031(0,79)$ of mounting bushing where shaft length will not permit standard flat.

Figure 14
. 125 (3.18 mm) Diameter, Flatted Shaft

Flat will extend to within $.031(0,79)$ of mounting bushing where shaft length will not permit standard flat.

Figure 11
.250 (6.35 mm) Diameter - Slotted Shaft

Figure 13
. 125 (3.18mm) Diameter - Concentric Shafts

Note: Only Plain Ends are Available for Concentric Shaftz

Figure 15
Trimmer

Dimension A: . 025 (0.64) Standard
Other lengths available to 50 (12.70) Maximum

Series 388 \& 389 controls are assembled from 1/2" square, stackable potentiometer and switch modules. Combine up to 8 modules, with single or concentric metal shafts. Series 388 potentiometer modules have conductive plastic resistive elements, and Series 389 potentiometer modules have cermet resistive elements.

The most common configurations are listed below. Contact your State Electronics sales representative for your custom requirements.
Series 388/389-Horizontal Mounting Styles Page
B-22: 1, 2, 3, or 4 Potentiometer or Rotary Switch Modules, PC Pin Terminals 11
B-22: 2 or 3 Potentiometer or Rotary Switch Modules, PC Pin Terminals, Concentric Shafts. 11C
B-24: 1, 2, 3, or 4 Potentiometer or Rotary Switch Modules, PC Pin Terminals, Support Plates 12
B-22: 2 or 3 Potentiometer or Rotary Switch Modules, PC Pin Terminals, Concentric Shafts, Support Plates 12C
B-22: 1, 2, 3, or 4 Potentiometer or Rotary Switch Modules, Solder Hook Terminals 13
B-22: 2 or 3 Potentiometer or Rotary Switch Modules, Solder Hook Terminals, Concentric Shafts 13C
B-22: Single Potentiometer or Rotary Switch, plus Push-Pull/Momentary Switch, PC Pin Terminals 14
B-22: Single, Dual Pot or Rotary Switch, plus Push-Pull/Momentary Switch, Solder Hook Terminals 14C
B-28: Dual Potentiometer/Rotary switch with (BJ) Push-Pull/(BJM) Momentary Switch; PC Pin Terminals 15
Detent
B-22: Single, Dual Potentiometer with Detent, Valley Style, PC Pin Terminals, Solder Hook Terminals 16
B-24: Single, Dual Potentiometer with Detent, Valley Style, PC Pin Terminals, Support Plates 17
Schadow Switch
Single, Dual Potentiometer with DPDT Schadow Switch, PC Pin Terminals 18
Series 388/389 - Vertical Mounting Styles
C-8: Single Potentiometer or Rotary Switch, PC Pin Terminals 19
A-18: Single Potentiometer or Rotary Switch, PC Pin Terminals 19
C-15: BBJ Single Push-Pull / BBJM Momentary Switch, PC Pin Terminals 20
A-19, A-20: Dual Potentiometer or Rotary Switch, PC Pin Terminals 20
C-14, A-21, C-9, C-10: Dual Potentiometer or Rotary Switch, PC Pin Terminals 21
A-22, C-15: BBJ Momentary/ BBJM Push-Pull Switch, PC Pin Terminals 21
C-11: Single Potentiometer and BBJ/BBJM Switch, PC Pin Terminals 22
Concentric Shafts
C-9, C-10: Dual Potentiometer, Concentric Shaft, PC Pin Terminals 22
Detent
C-8, A-18, C10, A20: Single, Dual Potentiometer with Detent, Valley Style, PC Pin Terminals 23

Dwg 11-1: B-22 Single Potentiometer or Rotary Switch, PC Pin Terminals

Dwg 11-2: B-22 Dual Potentiometer or Rotary Switch, PC Pin Terminals

Front View

PC Board Layout (top view)

Dwg 11-3: B-22 Triple Potentiometer or Rotary Switch, PC Pin Terminals

Dwg 11-4: B-22 Quad Potentiometer or Rotary Switch, PC Pin Terminals

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pin length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389 - Horizontal Mounting Styles (continued)
Drawing 11C-1: B-22 Dual Potentiometer or Rotary Switch, Concentric Shaft, PC Pin Terminals

Front View

Drawing 11C-2: B-22 Triple Potentiometer or Rotary Switch, Concentric Shaft, PC Pin Terminals

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016$ [0,40], except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 12-1: B-24 Single Potentiometer or Rotary Switch, Support Plates

Dwg 12-2: B-24 Dual Potentiometer or Rotary Switch, Support Plates

Dwg 12-3: B-24 Triple Potentiometer or Rotary Switch, Support Plates

Dwg 12-4: B-24 Quad Potentiometer or Rotary Switch, Support Plates

PC Board Layout (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified
2. B-24 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Support Plate Dimensions:			
Type	"A" S	upport Plate	"C" Terminal Length
B-24-1	. 375	[9.53]	. 250 [6.35] STANDARD
B-24-2	. 500	[12.70]	. 375 [9.53]
B-24-3	. 625	[15.88]	. 500 [12.70]
B-24-4	. 750	[19.05]	. 625 [15.88]
B-24-5	. 275	[6.98]	. 125 [3.18]

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 12C-1: B-24 Dual Potentiometer or Rotary Switch, Concentric Shaft, PC Pin Terminals, Support Plates

PC Board Layout (top view)

Dwg 12C-2: B-24 Triple Potentiometer or Rotary Switch, Concentric Shaft, PC Pin Terminals, Support Plates

Support Plate Dimensions:				
Type	"A" S	upport Plate	"C"	erminal Length
B-24-1	. 375	[9.53]	. 250	[6.35] STANDARD
B-24-2	. 500	[12.70]	. 375	[9.53]
B-24-3	. 625	[15.88]	. 500	[12.70]
B-24-4	. 750	[19.05]	. 625	[15.88]
B-24-5	. 275	[6.98]	. 125	[3.18]

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Dwg 13-1: B-22 Single Potentiometer or Rotary Switch, Solder Hook Terminals

Dwg 13-2: B-22 Dual Potentiometer or Rotary Switch, Solder Hook Terminals

Front View

Dwg 13-3: B-22 Triple Potentiometer or Rotary Switch, Solder Hook Terminals

Front View

Dwg 13-4: B-22 Quad Potentiometer or Rotary Switch, Solder Hook Terminals

NOTE: Solder Hook Terminal receives (3) NO. 22 AWG . 025 (0.64 mm) solid wires

Dwg 13C-1: B-22 Dual Potentiometer or Rotary Switch, Concentric Shaft, Solder Hook Terminals

Front View

Dwg 13C-2: B-22 Triple Potentiometer or Rotary Switch, Concentric Shaft, Solder Hook Terminals

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 14-1 A: B-22 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals

Dwg 14-1B: B-22 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals, Support Plate

Dwg 14-1C: B-22 Single Pot or Rotary Switch, plus Push-Pull/Momentary Switch, Solder Hook Terminals

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016$ [0,40], except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389 - Horizontal Mounting Styles (continued)
Dwg 14-2A: B-22 Dual Potentiometer or Rotary Switch, plus Push-Pull/Momentary Switch, PC Pin Terminals

Dwg 14-2B: B-22 Dual Potentiometer or Rotary Switch, plus Push-Pull/Momentary Switch, PC Pin Terminals with Support Plates

Dwg 14-2C: B-22 Dual Pot or Rotary Switch, plus Push-Pull/Momentary Switch, Solder Hook Terminals

Front View

Series BJ Push-Pull Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 14-3: B-24 Dual Pot or Rotary Switch, Concentric Shaft, PC Pin Terminals, Support Plates

PC Board Layout (top view)

Dwg 14-3A: B-24 Triple Pot or Rotary Switch, Concentric Shaft, PC Pin Terminals, Support Plates

Rear View

Support Plate Dimensions:					
Type	"A"	upport Plate	"C"	ermina	l Length
B-24-1	. 375	[9.53]	. 250	[6.35]	STANDARD
B-24-2	. 500	[12.70]	. 375	[9.53]	
B-24-3	. 625	[15.88]	. 500	[12.70]	
B-24-4	. 750	[19.05]	. 625	[15.88]	
B-24-5	. 275	[6.98]	. 125	[3.18]	

Series 388/389 - Horizontal Mounting Styles (continued)
Dwg 15-1: Dual Potentiometer/Rotary switch with (BJ) Push-Pull/(BJM) Momentary Switch; PC Pin Terminals (Support Plates optional)

Locating Lug (no Support Brackets)

Front View
Support Brackets (no Locating Lug)

Front View

Rear View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4
together will create a SPDT switch together will create a SPDT switch

Dwg 15-2: Dual Potentiometer/Rotary switch with (BJ) Push-Pull/(BJM) Momentary Switch; Solder Hook Terminals.

Front View

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Series 388/389 - Horizontal Mounting Styles (continued)
Dwg 15-3: Triple Potentiometer/Rotary switch with (BJ) Push-Pull/(BJM) Momentary Switch; PC Pin Terminals (Support Plates optional)

Locating Lug and no Support Brackets

Front View
Support Brackets and no Locating Lug

Front View

Dwg 15-4: Triple Potentiometer/Rotary switch with (BJ) Push-Pull/(BJM) Momentary Switch; Solder Hook Terminals.

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum $0.875^{\prime \prime}$
3. Drawings are not to scale.

Dwg 16-1: B-22 Single Potentiometer with detent, Valley Style, PC Pin Terminals

Front View

Dwg 16-2: B-22 Dual Potentiometer with detent, Valley Style, PC Pin Terminals

PC Board Layout (top view)

Dwg 16-3: B-22 Single Potentiometer with detent, Valley Style, Solder Hook Terminals

Dwg 16-4: B-22 Dual Potentiometer with detent, Valley Style, Solder Hook Terminals

Front View

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 17-1: B-24 Single Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates

Dwg 17-2: B-24 Dual Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates

PC Board Layout (Top View)

Front View

Rear View

Series 388/389-Horizontal Mounting Styles (continued)
Dwg 18-1: Single Potentiometer with DPDT Schadow Switch: Momentary Push or Push On / Push Off.

Dwg 18-2: Dual Potentiometer with DPDT Schadow Switch: Momentary Push or Push On / Push Off.

Series 388/389 - Vertical Mounting Styles

Dwg 19-1: C-8 Single Potentiometer or Rotary Switch, PC Pin Terminals
 1/4" Dia. Bushing:
$0.039 \pm .005$ [0.099] $0.039 \pm .005$ [0.099]
3/8" Dia. Bushing 0.07 $\pm .005$ [0.178]

PC Board Layout (top view) Type C-8

Dwg 19-2: A-18 Single Potentiometer or Rotary Switch, PC Pin Terminals

PC Board Layout (top view) Type A-18

Series 388/389 - Vertical Mounting Styles (continued)

Dwg 20-1: C-15 Single BBJ Push-Pull / BBJM
Momentary Switch, PC Pin Terminals

Dwg 20-3: A-20 Dual Potentiometer or
Rotary Switch, PC Pin Terminals

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. Drawings are not to scale.

PC BOARD LAYOUT (top view)
Type $\mathrm{A}-20$

Notes:

Dwg 20-2: A-19 Dual Potentiometer or Rotary Switch, PC Pin Terminals

Series 388/389 - Vertical Mounting Styles (continued)

Dwg 21-1: A-21 Dual Potentiometer or Rotary Switch, PC Pin Terminals

PC BOARD LAYOUT (top view) Type A-21

Dwg 21-2: A-20 Dual Potentiometer or Rotary Switch, PC Pin Terminals

Dwg 21-4: C-10 Dual Potentiometer or Rotary Switch, PC Pin Terminals

Dwg 21-3: C-9 Dual Potentiometer or Rotary Switch, PC Pin Terminals

Dwg 22-1: C-9 Dual Potentiometer, Concentric Shaft, PC Pin Terminals

Dwg 22-2: C-10 Dual Potentiometer, Concentric Shaft, PC Pin Terminals

Dwg 22-3: C-11 Single Potentiometer and BBJ
Momentary/BBJM Push-Pull Switch, PC Pin Terminals

DIMENSION NOTES
A= Shaft Length (Out Position)
$B=$ Bushing Length
$.250[6.35 \mathrm{~mm}]$ STD
.375 [9.53mm]
$.500[12.70 \mathrm{~mm}]$

Dwg 23-1: C-8 Single Potentiometer with Detent, PC Pin Terminals

PC Board Layout (top view)
Type C-8 Type C-8

Dwg 23-2: A-18 Single Potentiometer with Detent, PC Pin Terminals

PC Board Layout (top view) Type A-18

Dwg 23-3: C-10 Dual Potentiometer with Detent, PC Pin Terminals

Dwg 23-4: A-20 Dual Potentiometer with Detent, PC Pin Terminals

MOD-POT ${ }^{\oplus}$

Series 388/389

 Request For Quotation Single Page Form

36 ROUTE 10 EAST HANOVER, N.J. 07936 TEL. 973-887-2550 Toll Free 800-631-8083

Request Quotation Online at Potentiometer.com

Customer Name \qquad Address \qquad
City, State, Zip, Country \qquad Customer Part Number/When Specified

SEE DATA SHEETS FOR ASSEMBLED DIMENSIONS \& DETAILED DESCRIPTION OF THE FOLLOWING OPTIONS:

NOTE: SELECT THE DIMENSIONS WHICH ARE REQUIRED AND FILL IN ALL APPROPRIATE BOXES

REMARKS AND/OR SPECIAL FEATURES: \qquad
Date: \qquad Issued By \qquad Title: \qquad Phone: \qquad

DISCLAIMER: Due to the unlimited design combinations, certain designs may not perform in accordance with all of the specifications
Fax completed form to: STATE ELECTRONICS, 36 Route 10, East Hanover, NJ 07936 • FAX 973-887-1940
For Assistance Contact Clarosystem Product Manager Toll Free - 800-631-8083

1/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt Cermet-1 Watt

36 ROUTE 10 EAST HANOVER, N.J. 07936 TEL. 973-887-2550 Toll Free 800-631-8083

Request Quotation Online at Potentiometer.com

Series 388/389 Custom Ordering Information - Follow Steps to Describe Control

Resistance Element (choose one)

2 Terminals OR Support Plates (choose one)
\square Terminals (choose style)
\square Solder Hook
\square PC Pin Style B22 (specify length)
.250 in. (6.35 mm) . $350 \mathrm{in} .(8.89 \mathrm{~mm})$ $\square .750 \mathrm{in} .(19.05 \mathrm{~mm})$ $.500 \mathrm{in} .(12.7 \mathrm{~mm})$$625 \mathrm{in} .(15.875 \mathrm{~mm})$
$\square .875$ in. (22.225mm) Standard
\square PC Pin Style special configuration (specify)

Optional Support Plates (choose one type)

Type	"A"Support Plate		"C"Terminal	
in.	(mm)	(mm)		
$\square \mathrm{B}-24-1$.375	(9.53)	.250	(6.35)
$\square \mathrm{B}-24-2$.500	(12.53)	.375	(9.35)
$\square \mathrm{B}-24-3$.625	(15.88)	.500	(12.70)
$\square \mathrm{B}-24-4$.750	(19.05)	.625	(15.88)
$\square \mathrm{B}-24-5$.275	(6.98)	.125	(3.18)
* B-24-6	.2969	(7.54)	.175	(4.45)
* B-24-7	.4375	(11.11)	.315	(8.00)
* B-24-8	.5625	(14.28)	.425	(10.8)

* (Discontinued - For Reference Only)

Series 388/389 Request For Quotation Page 2 of 3

1/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt Cermet-1 Watt

MOD-POT ${ }^{\text {® }}$

Series 388/389 Request For Quotation Page 3 of 3

1/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt
Cermet - 1 Watt

7 Special Options (Specify if required)
$\square 8 \mathrm{lb}$. Stop Torque

8
Bushing (Choose length and diameter)
Length (Dim " A ")Plain . 250 in. $(6.35 \mathrm{~mm})$
DiameterPlain .250 in. (6.35 mm)Plain .375 in. (9.53 mm)Plain . 375 in. (9.53 mm)Plain .500 in (12.70 mm)Locking .375 in (9.53 mm)

9
Shaft
Diameter (Choose one) \square
.125 in. (3.18 mm) (with .250 in (6.35 mm) Dia. bushing) $.250 \mathrm{in} .(6.35 \mathrm{~mm})$ (with $.375 \mathrm{in} .(9.53 \mathrm{~mm})$ Dia. bushing)

Length (Dim "B") from mounting surface (FMS) (specify) \qquad
Concentric Shafts (available for Up to 3 modules. Module closest to Panel is controlled by outer shaft.) . 125 in . (3.18 mm) Outer Diameter; . 078 in . (1.98mm) Inner Diameter

Length FMS (specify)
Outer \qquad Inner \qquad

Shaft Ending (Select one)PlainFlatted (specify length \& thickness)
\qquad \square SlottedSpecial (specify)
13
Marking (Specify)Standard
\square Other \qquad

DISCLAIMER: Due to the unlimited design combinations, certain designs may not perform in accordance with all of the specifications

GLOSSARY OF TERMS

Input and Output Terms

Output Voltage

(e) The voltage between the wiper terminal and the designated reference point. Unless otherwise specified, the designated reference point is the CCW terminal (See 3.1).

Figure 1
Circuit and Travel Diagram

Output Ratio

(e/E) The ratio of the output voltage to the designated input reference voltage. Unless otherwise specified, the reference voltage is the total applied voltage.

Rotation and Translation

Total Mechanical Travel

The total travel of the shaft between integral stops, under the specified stop load. In potentiometers without stops, the mechanical travel is continuous.

Mechanical Overtravel - Wirewound

The shaft travel between each End Point (or Theoretical End Point for Absolute Conformity or Linearity units) and its adjacent corresponding limit of Total Mechanical Travel.

Mechanical Overtravel

The shaft travel between each Theoretical End Point and its adjacent corresponding limit of Total Mechanical Travel.

Backlash

The maximum difference in shaft position that occurs when the shaft is moved to the same actual Output Ratio point from opposite directions.

Theoretical Electrical Travel

The specified shaft travel over which the theoretical function characteristic extends between defined Output Ratio limits, as determined from the Index Point.

Electrical Overtravel - Nonwirewound

The shaft travel over which there is continuity between the wiper terminal and the resistance element beyond each end of the Theoretical Electrical Travel.

Electrical Continuity Travel

The total travel of the shaft over which electrical continuity is maintained between the wiper and the resistance element.

Tap Location

The position of a tap relative to some reference. This is commonly expressed in terms of an Output Ration and/or a shaft position. When a shaft position is specified, the Tap Location is the center of the Effective Tap Width.

Resistance

End Resistance

The resistance measured between the wiper terminal and an end terminal with the shaft positioned at the corresponding End Point.

Temperature Coefficient Of Resistance

The unit change in resistance per degree celsius change from a reference temperature, expressed in parts per million per degree celsius as follows:

$$
T . C .=\frac{R_{2}-R_{1}}{R_{1}\left(T_{2}-T_{1}\right)} \times 106
$$

Where:
R1 = Resistance at reference temperature in ohms.
R2 $=$ Resistance at test temperature in ohms
T1 = Reference temperature in degrees celsius.
T2 $=$ Test temperature in degrees celsius.

Conformity and Linearity

Linearity

A specific type of conformity where the theoretical function characteristic is a straight line.

Mathematically:

$$
\frac{e}{E}=f(W) \pm C=A(W)+B \pm C
$$

Where:
A is the given slope; B is given intercept at $\mathrm{W}=0$.
W = Angle or slope

Absolute Linearity

The maximum deviation of the actual function characteristic from a fully defined straight reference line. It is expressed as a percentage of the Total Applied Voltage and measured over the Theoretical Electrical Travel. An Index Point on the actual output is required.

The straight reference line may be fully defined by specifying the low and high theoretical end Output Rations separated by the Theoretical Electrical Travel. Unless otherwise specified, these end Output Rations are 0.0 and 1.0 respectively.

Mathematically:

$$
\frac{e}{E}=A\left(W / W_{T}\right)+B \pm C
$$

Where:

A is the given slope; B is given intercept at $W=0$.
Unless otherwise specified: $\mathrm{A}-1 ; \mathrm{B}=0$

Figure 2

Independent Linearity

The maximum deviation, expressed as a percent of the Total Applied Voltage, of the actual function characteristic from a straight reference line with its slope and position chosen to minimize deviations over the Actual Electrical Travel, or any specified portion thereof.

Note: End Voltage requirements, when specified, will limit the slope and position of the reference line.

Mathematically:

$$
\frac{\mathrm{e}}{\mathrm{E}}=\mathrm{P}\left(\mathrm{~W} / \mathrm{W}_{\mathrm{A}}\right)+\mathrm{Q} \pm \mathrm{C}
$$

Where:
P is unspecified slope; Q is unspecified intercept at $W=0$. And both are chosen to minimize C but are limited by the End Voltage requirements.

Figure 3 Independent Linearity

Electrical Characteristics

Noise

Any spurious variation in the electrical output not present in the input, defined quantitatively in terms of an equivalent parasitic, transient resistance in ohms, appearing between the contact and the resistance element when the shaft is rotated or translated. The Equivalent Noise Resistance is defined independently of the resolution, the functional characteristics, and the total travel. The magnitude of the Equivalent Noise Resistance is the maximum departure from a specified reference line. The wiper of the potentiometer is required to be excited by a specified current and moved at a specified speed.

Output Smoothness (Non-wirewound Potentiometers Only)

 Output Smoothness is a measurement of any spurious variation in the electrical output not present in the input. It is expressed as a percentage of the Total Applied Voltage and measured for specified travel increments over the Theoretical Electrical Travel. Output Smoothness includes effects of contact resistance variations, resolution, and other micrononlinearities in the output.
Resolution

A measure of the sensitivity to which the Output Ratio of the potentiometer may be set.

Dielectric Strength

Ability to withstand under prescribed conditions, a specified potential of a given characteristic between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang without exceeding a specified leakage current value.

Insulation Resistance

The resistance to a specified impressed DC voltage between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang, under prescribed conditions.

Power Rating

The maximum power that a potentiometer can dissipate under specified conditions while meeting specified performance requirements.

Power Derating

The modification of the nominal power rating for various considerations such as Load Resistance, Output Slopes, Ganging, nonstandard environmental conditions and other factors.

Life

The number of shaft revolutions or translations obtainable under specific operating conditions and within specified allowable degradations of specific characteristics.

Mechanical Characteristics

Shaft Runout

The eccentricity of the shaft diameter with respect to the rotational axis of the shaft, measured at a specified distance from the end of the shaft. The body of the potentiometer is held fixed and the shaft is rotated with a specified load applied radially to the shaft. The eccentricity is expressed in inches, TIR.

Lateral Runout

The perpendicularity of the mounting surface with respect to the rotational axis of the shaft, measured on the mounting surface at a specified distance from the outside edge of the mounting surface. The shaft is held fixed and the body of the potentiometer is rotated with specified loads applied radially and axially to the body of the pot. The Lateral Runout is expressed in inches.

Shaft Radial Play (single shaft potentiometer)

The total radial excursion of the shaft, measured at a specified distance from the front surface of the unit. A specified radial load is applied alternately in opposite directions at a specified point. Shaft Radial Play is expressed in inches.

Shaft End Play

The total axial excursion of the shaft, measured at the end of the shaft with a specified axial load supplied alternately in opposite directions. Shaft End Play is expressed in inches.

Starting Torque

The maximum moment in the clockwise and counterclockwise directions required to initiate shaft rotation anywhere in the Total Mechanical Travel.

Running Torque

The maximum moment in the clockwise and counterclockwise directions required to sustain uniform shaft rotation at a specified speed throughout the Total Mechanical Travel.

Moment of Inertia

The mass moment of inertia of the rotating elements of the potentiometer about their rotational axis.

Stop Strength

Static Stop Strength

The maximum static load that can be applied to the shaft at each mechanical stop for a specified period of time without permanent change of the stop positions greater than specified.

Dynamic Stop Strength

The inertia load, at a specified shaft velocity and a specified number of impacts, that can be applied to the shaft at each stop without a permanent change of the stop position greater than specified.

Orders

All orders are subject to acceptance by State Electronics, E. Hanover, NJ. No order or contract shall be deemed accepted unless and until such acceptance is made in writing by State Electronics.

All agreements are more contingent upon strikes, accidents or causes of delay beyond our control

Prices and Specifications

Prices, quotations, specifications and other terms and all statements appearing in the Company's catalogs and advertisements, and otherwise made by the Company, are subject to change without notice. State Electronics reserves the right to make changes in design at any time without incurring any obligation to provide same units previously purchased or to continue to supply discontinued items. The specifications shown in the sales literature are not always the latest version. Certified current specification prints are available upon request.

Unless specifically provided in writing, prices quoted are based upon manufacture of quantities and types originally specified and are subject to revision when interpretation or engineering changes are initiated by the customer. Quoted prices are based upon present cost of materials and labor and are subject to change without notice.

We are not responsible for typographical errors made in any of our publications or for stenographic or clerical errors made in preparations of quotations, all such errors are subject to correction.

Delivery

Delivery promise is based on our best estimate of the date material will be shipped from our factory and we assume no responsibility for losses, damage or consequential damages due to delays.

Terms of Payment

On approved orders, terms are net thirty (30) days from the date of invoice. The Company may at any time, when in its opinion the financial condition of the customer warrants it, either hold or suspend credit. In cases where credit is not established or satisfactory financial information is not available, the terms are cash with order or C.O.D. at the option of the Company. Each shipment will be considered a separate and independent transaction and payment should be made accordingly.

Shipments

All shipments are made F.O.B. shipping point (unless otherwise specified) and packaging for domestic shipment is included in the quoted price. When special domestic or export packaging is specified involving greater expense than is customary, a charge will be made to cover such extra expense. Unless otherwise specified, we will normally use the best, least expensive surface transportation. Reasonable care is exercised in packaging our products for shipment and no responsibility is assumed by the Company for delay, breakage or damage after having made delivery in good order to the carrier. All claims for breakage or damage should be made to the carrier, but will be glad to render all possible assistance in securing satisfactory adjustment of such claims.

Claims and Rejected Material

Claims for defective material must be made within 30days of the customer's receipt of shipment. No products may be returned without a return authorization (RMA).

Country of Origin

The 388 / 389 and 70 series Mod-Pot products are assembled in the United States at our facility located in East Hanover, New Jersey, USA, using components parts manufactured by the Sensing and Control Division of Honeywell International headquartered in Morris Township, New Jersey, USA.

Export Information

HARMONIZED TARIFF SCHEDULE (HTS \#) - 8533.31.0000
EXPORT CONTROL CLASSIFICATION \# (ECCN \#) - EAR99

DISCLAIMER

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

State Electronics Parts Corp., Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "State Electronics"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. State Electronics makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.
To the maximum extent permitted by applicable law, State Electronics disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on State Electronics'knowledge of typical requirements that are often placed on State Electronics products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify State Electronics' terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, State Electronics products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the State Electronics product could result in personal injury or death. Customers using or selling State Electronics products not expressly indicated for use in such applications do so at their own risk. Please contact authorized State Electronics personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of State Electronics. Product names and markings noted herein may be trademarks of their respective owners.

