GTATヨ ELECTRONICS

Series S159 MOD-POT ${ }^{2 \text { TM }}$ Potentiometers Custom Potentiometer Designer Guide

36 ROUTE 10, STE 6 • EAST HANOVER • NEW JERSEY • 07936 Phone 973-887-2550 • Toll Free 1-800-631-8083 • Fax 973-887-1940 Internet http://www.potentiometers.com

WHY WAIT?

Mod Pot $^{2 \text { TM }}$ potentiometers are the only "form fit and functional" replacement for the original Mod Pot $^{\oplus}$ and can be configured to match virtually all previous Mod Pot ${ }^{\oplus}$ designs.

Now almost any special combination potentiometer you specify can be prototyped, manufactured and shipped soon after your design is finalized.

Since Mod Pot ${ }^{2 \text { TM }}$ potentiometers are modular in construction, we can produce prototype quantities of $1 / 2$ inch square (S 8 X series) or $5 / 8$ inch square (S 159 series), conductive plastic or cermet potentiometers, for you in just a few hours and even production quantities in a matter of days with our VIP (Very Important Potentiometer) service!

Over one billion combinations of single, dual, triple, quad arrangements and rotary switches and hundreds of shaft terminal variations can be produced. The Mod $\mathrm{Pot}^{2 \mathrm{TM}}$ potentiometer family also offers the only true 10-turn Module potentiometer up to 2 -sections, including concentric shafts!

If you need a potentiometer and you need it fast, call or email our product manager or fax us your requirements using the Custom Potentiometer Order Forms included in this catalog.

Series S159 Potentiometer 5/8" [15,88mm] Square

Description:

The Series S159 modules are 5/8" square [15,88mm], with metal shaft and bushing.
Combine up to 4 modules, including a rotary switch option.
For more information about this product, visit our website at: www.potentiometers.com

Electrical Specifications

Resistance Range - Conductive Plastic Audio \& Linear Taper: 1 K ohms to 1 megohm

Resistance Range - Cermet
Linear Taper: 100 ohms to 1 megohm
Audio Taper: 1 K ohms to 1 megohm
Total Resistance Tolerance $\pm 10 \%$ Standard ($\pm 5 \%$ Optional)
Independent Linearity: $\pm 5 \%$
Absolute Minimum Resistance: 2 ohms maximum
Effective Electrical Angle - Conductive Plastic Linear Taper: $240^{\circ} \pm 5^{\circ}$; Audio Taper: $225^{\circ} \pm 5^{\circ}$
Effective Electrical Angle - Cermet Linear Taper: $240^{\circ} \pm 6^{\circ}$; Audio Taper: $225^{\circ} \pm 6^{\circ}$
Contact Resistance Variation
Conductive Plastic: $\pm 1 \%$
Cermet: $\pm 1 \%$ or 3 ohms (whichever is greater)
Dielectric Withstanding Voltage (MIL-STD-202 - Method 301) Sea Level: 1,500 VAC minimum 70,000 feet: 500 VAC minimum

Insulation Resistance: 1,000 megohms minimum
Power Rating at $70^{\circ} \mathrm{C}$ (Derate to 0 at $125^{\circ} \mathrm{C}$)
(Voltage limited by power dissipation or 350 VAC, whichever is less)

Single Section:

Conductive Plastic - Linear Taper: 1 watt Conductive Plastic - Non-linear Taper: 0.5 watt Cermet - Linear Taper: 2 watts
Cermet - Non-linear Taper: 1 watt

Multiple Section:

Conductive Plastic - Linear Taper: 0.5 watt/section Conductive Plastic - Audio Taper: 0.25 watt/section Cermet - Linear Taper: 1.0 watt/section Cermet - Non-linear Taper: 0.5 watt/section
Theoretical Resolution: Essentially Infinite

Features:

- Stackable - up to 6 modules
- Conductive Plastic or Cermet Resistance Element
- Linear, CW or CCW audio Taper, S-Taper

- Metal Shaft and Bushing

- PCB or Solder Lug Terminals

- Rotary Switch modules
- IP40 Rating
- RoHS Compliant

Mechanical Specifications

Mechanical Angle: $300^{\circ} \pm 5^{\circ}$
Stop Strength:
$1 / 4^{\prime \prime}$ and $1 / 8^{\prime \prime}$ diameter shafts: $4 \mathrm{lb} .-\mathrm{in} .[45,19 \mathrm{~N}-\mathrm{cm}$]
Starting and Running Torque (Non-Locking Bushing):
Single Section: 0.5 to 1.5 oz.-in. [0,35 to $1,06 \mathrm{~N}-\mathrm{cm}$] Dual Section: 0.5 to 1.5 oz.-in. [0,35 to $1,06 \mathrm{~N}-\mathrm{cm}$] Triple Section: 0.5 to 2.0 oz.-in. [0,35 to $1,41 \mathrm{~N}-\mathrm{cm}$] Quad Section: 0.5 to 2.0 oz.-in. [0.35 to $1.41 \mathrm{~N}-\mathrm{cm}$] (Increased Torque Range Available All Designs)

Starting and Running Torque (Locking Bushings): 0.2 to 4.0 oz.-in. [0,14 to $2,82 \mathrm{~N}-\mathrm{cm}$]

Shaft Locking Torque with Locknut @ 10 in-lb. (B \& E Bushings): 20 oz-in. [14 N-cm]

Mounting: 15-18 lb.-in. [1,7-2,0 N-m] maximum
Running Torque, Maximum:
Single Section: 0.5 to 2.0 oz.-in. [0,35 to $1,4 \mathrm{~N}-\mathrm{cm}$]
Dual Section: 0.5 to 2.0 oz.-in. [0,35 to $1,4 \mathrm{~N}-\mathrm{cm}$]
Weight:
Single Section: 21 grams maximum
Additional Sections: 6 grams maximum
Multiple Sections:
6 gangs maximum
Soldering Condition:
Recommended hand soldering using Sn95/Ag5 no clean solder, $0.025^{\prime \prime}$ wire diameter. Maximum temperature $750^{\circ} \mathrm{F}$ [$399^{\circ} \mathrm{C}$] for 3 seconds.
No wash process to be used with no clean flux.

Series S159 Potentiometer

5/8" (15,88mm) Square

Environmental Specifications

Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Coefficient over Storage Range:
Conductive Plastic: $\pm 1,000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$;
Cermet: $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Vibration (Single Section): 15 G
Total Resistance Shift: $\pm 2 \%$ maximum
Voltage Ratio Shift: $\pm 5 \%$ maximum
Shock (Single Section): 30 G
Total Resistance Shift: $\pm 2 \%$ maximum
Voltage Ratio Shift: $\pm 5 \%$ maximum
Load Life: 1,000 hours
Conductive Plastic Total Resistance Shift: $\pm 10 \%$ max.
Cermet Total Resistance Shift: $\pm 5 \%$ max.
Rotational Life (No Load): 100,000 cycles
Conductive Plastic Total Resistance Shift: Linear taper: 10 ohms or $\pm 10 \%$ TRS max. (whichever is greater) Audio taper: $\pm 20 \%$ TRS maximum
Cermet Total Resistance Shift: All tapers: $\pm 20 \%$ TRS maximum
Contact Resistance Variation @ 50,000 Cycles: Audio taper: $\pm 3 \%$ Linear taper: $\pm 2 \%$

Moisture Resistance (MIL-STD-202, Method 103, Condition B)
Conductive Plastic Total Resistance Shift: (B \& E tapers): $\pm 10 \%$ TRS max. (D, G, S \& T tapers): $\pm 20 \%$ TRS max.
Cermet Total Resistance Shift: (all tapers): $\pm 5 \%$ TRS max.

Insulation Resistance (500 VDC): 100 megohms minimum
IP Rating: IP40

Rotary Switch Electrical Specifications

Contacts
DPST: NO/NO, NC/NC, or NO/NC
Power Rating (Resistive Load)
DPST: 2 A @ 125 volts RMS- 60 Hz or 2 A @ 28 VDC, 1 A @ 250 volts RMS-60 Hz

Contact Resistance (0.1 VDC-10 mA)
10 milliohms nominal
Contact Bounce: 5 milliseconds maximum
Dielectric Withstanding Voltage (MIL-STD-202, Method 301) Sea Level: 1500 VAC minimum

Insulation Resistance: 1000 megohms minimum

Rotary Switch Environmental Specifications

Operating Temperature Range: $-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vibration (Dual Section): 8 G
(Triple Section): 5 G
(Quadruple Section): 3 G
Shock: (Dual Section): 20 G
(Triple Section): 15 G
(Quadruple Section): 10 G
Contact Resistance: 10 milliohms maximum
Contact Bounce: 0.1 millisecond maximum
Rotational Life: 25,000 cycles
Switch Actuating Torque
(50\% Duty cycle @ Rated Power Load):
2 to 7 oz.-in. [1,41 to $4,94 \mathrm{~N}-\mathrm{cm}$]
Contact Resistance: 100 milliohms maximum
Moisture Resistance (MIL-STD-202, Method 106, Condition B)
Contact Resistance (0.1 VDC-10 mA): 10 milliohms maximum
Insulation Resistance (After 24 hours @ room temperature) (500 VDC) 100 megohms minimum
Switch Housing Material:
High temperature, flame retardant, thermosetting plastic

Rotary Switch Mechanical Specifications

Actuating Torque (Each Section, Switch Module Only): 5 to 15 oz.-in. [3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$]

Running Torque (Out of Detent, 2-4 Module Assembly): 0.3 to 2 oz.-in. [0,21 to $1,41 \mathrm{~N}-\mathrm{cm}$]

Detent: CW or CCW standard

Actuation Angle: 25°

Contact Materials: Fine silver with gold overlay
Terminal Styles: Solder lug only
Standard Orientation: In-line with control terminals
Optional: Rotated $90^{\circ} \mathrm{CCW}$ from standard
Terminal Strength (Before and After Soldering Heat Exposure): 2 lbs . $[0,9 \mathrm{~kg}]$ minimum

Disclaimer

Due to the unlimited design combinations, certain designs may not be feasible and/or perform in accordance with all of the specifications.

Most exterior dimensional references are measured from the potentiometer mounting surface. The mounting surface is the face of the bushing that rests against the inside surface of a panel. "From the Mounting Surface" is abbreviated as F.M.S.

Shaft and bushing lengths, PC Board layout and overall body length are always measured F.M.S. as well as the grid layout for PC board mounted versions.

The first section of the potentiometer is referred to as the "Panel Module". All designs begin with a panel module and may be followed by other modular components such as resistor modules, rotary switches, spacers and finally a rear plate.

The components are held together with 4 non-removable aluminum rivets. In certain application, where riveting may not be practical, small diameter screws may be used. After the panel module, there can be other resistive modules, each measuring .400 " $[10,16]$ deep, or switches, measuring $.375^{\prime \prime}[9,52]$ deep. A spacer measuring 0.100 " $[2,54]$ is required between modules in all concentric shaft configurations, the position of which is determined by the controlling shafts.

The pin spacing is a simple .200" $\times .200$ " $[5,08 \times 5,08]$ pattern for single shaft potentiometers using resistive modules only. Concentric shafts and/or switches alter that pattern and we have included drawings for the most popular configurations.

While it is theoretically possible to have many modules coupled together, we do not recommend more than a total of 3 per shaft.

A rotary switch module must always have a resistive module in front of it; i.e. it can never be the only module, or first module, on a shaft. You can have a maximum of 2 switches per shaft as long as they are preceded by a resistive module.

Resistive modules are available in either straight p.c. leads or solder hooks. Switches are only available with solder terminals that can also use female quick-connects. If you require a switch to be p.c. board mounted, you can incorporate rectangular slots on the board to match the switch terminals. However, it is only possible to do this with one side of the switch; the other side would have to be hand-wired. Switches are also available in a 90° rotated version to reduce the height above the board.

Shafts are available in many lengths, with different end profiles. The most popular shaft ending for single shaft units would be a standard screwdriver slot. The standard orientation of the slot is in line with the internal contact at the full CCW position. When a flatted shaft is specified, it is typically opposite the contact in the full CCW position. However the flat can be orientated at any angle to meet your requirements. Plain round shafts are also popular and can, in many cases, be interchangeable with slotted shafts if delivery time is an issue.

Rotational torque is the amount of force required to turn the shaft on the potentiometer. Each module on a shaft will introduce additional torque. The torque specifications for the most popular configurations are shown elsewhere in this catalog. In every case, the rotational torque has a fairly wide minimum to maximum range and it is not possible to narrow that range. It is possible to increase the minimum rotational torque using internal components; for example high-vibration environments or cockpit applications where you don't want to change a setting by accidentally hitting a knob.

The part numbering scheme shown in the catalog will allow you to specify the most common variations. Once a design is finalized we will assign a unique 6-character part number that will take into consideration all of the options. That part number is also associated with the originating customer for future reference.

Due to the unlimited number of combination available, certain performance specifications may not apply.
lists some of the options available for single and multisection controls. Because of the versatility of the MOD POT^{\oplus} Potentiometer, many other options are available.

	Section \#1	Section \#2	Section \#3	Section \#4					Switch Module Rotated 90			
					Potentiometer Solder Hooks		Potentiometer PC Leads		Potentiometer Solder Hooks		Potentiometer PC Leads	
					Dwg\#	Page	Dwg\#	Page	Dwg\#	Page	Dwg\#	Page
Single Section	Potentiometer				1A	8	1A-PC	8				
Dual Section Single Shaft	Potentiometer	Potentiometer			4A	9	4A-PC	9				
	Potentiometer	Rotary Switch			5A	10	5A-PC	11	5A-90 ${ }^{\circ}$	10	5A-PC90°	11
Dual Section Concentric Shafts	Potentiometer Outer Shaft	Potentiometer Inner Shaft			7A	12	7A-PC	12				
Triple Section Single Shaft	Potentiometer	Potentiometer	Potentiometer		12A	13	12A-PC	13				
	Potentiometer	Potentiometer	Rotary Switch		13A	14	13A-PC	15	13A-90 ${ }^{\circ}$	14	$\begin{gathered} 13 \mathrm{~A}-\mathrm{PC}- \\ 90^{\circ} \end{gathered}$	15
	Potentiometer	Rotary Switch	Rotary Switch		13B	16	13B-PC	17	13B-90 ${ }^{\circ}$	16	$\begin{array}{\|c} 13 B-P C- \\ 90^{\circ} \end{array}$	17
Triple Section Concentric Shafts	Potentiometer Outer Shaft	Potentiometer Inner Shaft	Potentiometer Inner Shaft		15A	18	15A-PC	18				
	Potentiometer Outer Shaft	Potentiometer Outer Shaft	Potentiometer Inner Shaft		15C	19	15C-PC	19				
	Potentiometer Outer Shaft	Potentiometer Inner Shaft	Rotary Switch Inner Shaft		16A	20	16A-PC	21	16A-90 ${ }^{\circ}$	20	$\begin{gathered} 16 A-P C- \\ 90^{\circ} \end{gathered}$	21
Quad Section Single Shaft	Potentiometer	Potentiometer	Potentiometer	Potentiometer	23A	22	23A-PC	22				
	Potentiometer	Potentiometer	Potentiometer	Rotary Switch	23D	23	23D-PC	24	23D-90 ${ }^{\circ}$	23	$\begin{gathered} \text { 23D-PC- } \\ 90^{\circ} \end{gathered}$	24
Quad Section Concentric Shaft	Potentiometer Outer Shaft	Potentiometer Outer Shaft	Potentiometer Inner Shaft	Potentiometer Inner Shaft	26A	25	26A-PC	25				
	Potentiometer Outer Shaft	Potentiometer Outer Shaft	Potentiometer Inner Shaft	Rotary Switch Inner Shaft	27A	26	27A-PC	27	27A-90 ${ }^{\circ}$	26	$\begin{gathered} \text { 27A-PC- } \\ 90^{\circ} \end{gathered}$	27
	Potentiometer Outer Shaft	Rotary Switch Outer Shaft	Potentiometer Inner Shaft	Rotary Switch Inner Shaft	28B	28			28B-90 ${ }^{\circ}$	28		

1. Basic type
2. Type of element (cermet or conductive plastic).
3. Type of terminals (resistor element only).
4. Number of sections.
5. Taper (each element on multi-section controls).
6. Total resistance value in ohms (each element on multi-section controls).
7. Bushing type (plain or locking).
8. Bushing length in inches or millimeters.
9. Bushing diameter $.375^{\prime \prime}[9,52 \mathrm{~mm}]$ or .250 " $[6,35 \mathrm{~mm}]$
10. Shaft ending (plain, slotted or flatted).
11. Shaft length FMS in inches or millimeters.
12. Switch type (maximum 2 rotary switches per shaft).
13. Locating lug option.
14. Mounting hardware.
15. Your part number, if any.
16. Marking requirement on the part.
17. Special features (forward complete detailed specs).

S159 Resistance Module Options

Element Type			Conductive Plastic $=$ CP Cermet $=C M$			
Taper			Linear	Log/Audio	Reverse Log / Reverse Audio	S
Resistance (ohms)	Code	Ref				
$\begin{aligned} & 100 \\ & 1,000 \\ & 10,000 \\ & 100,000 \\ & 1,000,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \\ & 105 \end{aligned}$	100 1K 10K 100K 1 Meg	$\begin{gathered} \text { CM } \\ C P \text { \& CM } \\ C P \& C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M ~ \end{gathered}$	$\begin{gathered} C M \\ C P ~ \& ~ C M \\ \text { CP \& CM } \\ \text { CP \& CM } \\ \text { CP \& CM } \end{gathered}$	$\begin{gathered} C M \\ C P ~ \& ~ C M \\ C P \& C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M ~ \end{gathered}$	$\begin{gathered} \hline C M \\ C P \& C M \\ C P \& C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \end{gathered}$
$\begin{aligned} & 150 \\ & 1,500 \\ & 15,000 \\ & 150,000 \end{aligned}$	$\begin{aligned} & 151 \\ & 152 \\ & 153 \\ & 153 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 1.5 \mathrm{~K} \\ 15 \mathrm{~K} \\ 150 \mathrm{~K} \\ \hline \end{array}$	$\begin{gathered} C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \end{gathered}$	$\begin{gathered} \text { CM } \\ \text { CP \& CM } \\ \text { CP \& CM } \\ \text { CP \& CM } \end{gathered}$	$\begin{gathered} \text { CM } \\ \text { CP \& CM } \\ \text { CP \& CM } \\ \text { CP \& CM } \end{gathered}$	$\begin{gathered} \hline C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M ~ \end{gathered}$
$\begin{array}{\|l\|} \hline 200 \\ 2,000 \\ 20,000 \\ 200,000 \\ \hline \end{array}$	$\begin{aligned} & 201 \\ & 202 \\ & 203 \\ & 204 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 2 K \\ 20 K \\ 200 \mathrm{~K} \end{array}$	$\begin{gathered} \hline C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \end{gathered}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & C P \& C M \\ & C P \& C M \\ & C P \& C M \end{aligned}$
$\begin{array}{\|l\|} \hline 250 \\ 2,500 \\ 25,000 \\ 250,000 \\ \hline \end{array}$	$\begin{aligned} & 251 \\ & 252 \\ & 253 \\ & 254 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 2.5 \mathrm{~K} \\ & 25 \mathrm{~K} \\ & 250 \mathrm{~K} \end{aligned}$	$\begin{gathered} C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \end{gathered}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & C P \& C M \\ & C P \& C M \\ & C P \& C M \end{aligned}$
$\begin{array}{\|l} 500 \\ 5,000 \\ 50,000 \\ 500,000 \\ \hline \end{array}$	$\begin{aligned} & 501 \\ & 502 \\ & 503 \\ & 504 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 500 \\ 5 K \\ 50 \mathrm{~K} \\ 500 \mathrm{~K} \end{array}$	$\begin{aligned} & \text { CP \& CM } \\ & C P \& C M \\ & C P ~ \& ~ C M \\ & C P ~ \& ~ C M ~ \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & C P \& C M \\ & C P \& C M \\ & C P \& C M \end{aligned}$
$\begin{array}{\|l} 750 \\ 7,500 \\ 75,000 \\ 750,000 \end{array}$	$\begin{aligned} & 751 \\ & 752 \\ & 753 \\ & 754 \end{aligned}$	$\begin{array}{\|l\|} \hline 750 \\ 7.5 \mathrm{~K} \\ 75 \mathrm{~K} \\ 750 \mathrm{~K} \end{array}$	$\begin{gathered} C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \\ C P ~ \& ~ C M \end{gathered}$	$\begin{aligned} & \text { CP \& CM } \\ & C P \& C M \\ & C P ~ \& ~ C M \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & \text { CP \& CM } \\ & \text { CP \& CM } \end{aligned}$	$\begin{aligned} & \text { CP \& CM } \\ & C P \& C M \\ & C P \& C M \end{aligned}$

Series S159 Potentiometer

5/8" [15,88mm] Square

S159 Resistance Tapers

On chart:
Linear Taper (A, H, or E options)
Clockwise Audio Taper (C or D options)
Counterclockwise Audio Taper (F or T options)
Modified Linear Taper (SP or SC) (Special Order)

Element \& Taper:

A = Linear Cermet 10\%
H = Linear Cermet 5\%
$\mathbf{E}=$ Linear Conductive Plastic 10\%
C = CW Audio Cermet 10\%
D = CW Audio Conductive Plastic 10\%
F = CCW Audio Cermet 10\%
$\mathbf{T}=$ CCW Audio Conductive Plastic 10\%
SP = Modified Linear "S" Conductive Plastic 10\% SC = Modified Linear "S" Cermet 10\%

Tapers A, C, D, E, H, SC \& SP are measured between the wiper and the counterclockwise terminal (pins 1 and 2). Tapers F \& T are measured between the wiper and the clockwise terminals (pins 2 and 3).

Switches

Rotary Switch - The rotary switch consists of two sets of contacts. See Part Number Explanation for available options.

Push-pull Switch - A four pole switch that is operated by a .125 inch $(3,18 \mathrm{~mm})$ diameter solid shaft. An inner concentric shaft that operated the push-pull switch only may have a diameter of .125 inch $(3,18 \mathrm{~mm})$ or .078 inch $(1,98 \mathrm{~mm})$. Shaft lengths are measured from the bushing mounting surface to the free end of the shaft with the shaft in the extended position. (This option is not currently available)

Momentary Push Switch - A push-pull switch equipped with a return spring such that the switch will return to the extended postion when the actuating force is removed.
(This option is not currently available)

Life - The switches will be electrically and mechanically operative after operational life test at rated current and voltage with a resistive load, per switch characteristics below. (This option is not currently available)

Electrial Ratings -

2 A @ 125 volts RMS 60HZ or 2 A@ 28 VDC, 1 A @ 250 volts RMS

Terminals - Switches are available with lug terminals

 only.It is possible to incorporate slots on your PC board to accept the flat terminals on one side of the switch. Switches are also avialable in 90° rotated versions to reduce the above board height or other clearnce issues.

		In Detent				
Switch Number	Detent @	Terminals 1 and 2 are:	Terminals 1 and 2 are:	Actuating Torque	Actuating Angle	Operational Life (Actuations)
SW50	CW END	OPEN	CLOSED	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW51 (STD)	CCW END	OPEN	CLOSED	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW52	CW END	OPEN	OPEN	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW53	CCW END	OPEN	OPEN	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW56 (90 $)$	CW END	OPEN	CLOSED	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW57 (90 $\left.{ }^{\circ}\right)$	CCW END	OPEN	CLOSED	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW58 $\left(90^{\circ}\right)$	CW END	OPEN	OPEN	$5-15$ oz.-in. 3,53 to $10,6 \mathrm{~N}-\mathrm{cm}$	25°	25,000
SW59 $\left(90^{\circ}\right)$	CCW END	OPEN	OPEN	$5-15$ oz.-in. 3,53 to $10,6 ~$ $\mathrm{~N}-\mathrm{cm}$	25°	25,000

PUSH-PULL AND MOMENTARY SWITCHES							
Switch Type	Type	Voltage $\mathbf{6 0 ~ H z ~ R M S ~}$	Current Amps	Actuating Force	Shaft Travel	Operational Life	
SWPP	Push Pull	125	2	7 ounces (1.9N) Min. 19 ounces (5.3N) Max.	$1 / 8 \mathrm{Inch}$ $(3.18 \mathrm{~mm})$	25,000	
SWPPM	Push Momentary	125	2	20 ounces (5.6N) Min. 130 ounces (8.3 N$)$ Max.	$1 / 8 \mathrm{Inch}$ $(3.18 \mathrm{~mm})$	25,000	

© State Electronics

S159 Product Drawings

The product drawings on the following pages show over 100 different configurations. Many other options are available - contact your State Electronics sales representative for information.
Section 1: Single Module. Pg. 8
Section 2: Dual Module, Single Shaft ...Pg. page 9
Section 3: Dual Module, Concentric Shaft...Pg. page 12
Section 4: Triple Module, Single Shaft ...Pg. page 13
Section 5: Triple Module, Concentric Shaft ..Pg. page 18
Section 6: Quad Module, Single Shaft...Pg. page 22
Section 7: Quad Module, Concentric Shaft ...Pg. page 25

Section 1: Single module, Single Shaft

1A - Single Potentiometer, Single Shaft, Solder Hooks

Dimension Notes:

$\mathbf{T 1}=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{T 3}=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=350 \pm .010[89 \pm 025]$
S1
$\mathbf{S 2}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

1A-PC - Single Potentiometer, Single Shaft, Solder Pins

Dimension Notes:
T1 $=.200[5,08]$
$\mathbf{T 1}=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{T 3}=.25$
T3 $=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$

Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

[^0]
Section 2: Dual module, Single Shaft

4A - Dual Potentiometer, Single Shaft, Solder Hooks

Dimension Notes:
T1 $=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
T3 $=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

4A-PC - Dual Potentiometer, Single Shaft, Solder Pins

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 2: Dual module, Single Shaft (continued)

5A - Single Potentiometer, Single DPST Rotary Switch, Solder Hooks
Switch Option specifications

Bottom View

Rear View

Front View Rotation

5A-90 - Single Potentiometer, Single DPST Rotary Switch, Solder Hooks (Rotated Switch Module)

Front View

Notes:

1. Potentiometer Terminals - . 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
7. Drawings not to scale.

Section 2: Dual module, Single Shaft (continued)

5A-PC - Single Potentiometer, Single DPST Rotary Switch, Solder Pins

Switch Option specifications

Bottom View

Rear View

Front View Rotation

5A-PC-90 ${ }^{\circ}$ - Single Potentiometer, Single DPST Rotary Switch, Solder Pins (Rotated Switch Module)

Notes:

1. Potentiometer Terminals - 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 3: Dual module, Concentric Shaft

7A - Dual Potentiometer, Concentric Shaft, Solder Hooks

7A-PC - Dual Potentiometer, Concentric Shaft, Solder Pins

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate
3. Switch Terminal Thickness: 1 \& 3,. 012 [0,405$]$; 2 \& 4, $.018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
7. Drawings not to scale.

Section 4: Triple module, Single Shaft

12A - Triple Potentiometer, Single Shaft, Solder Hooks

Dimension Notes:
$\mathbf{T 1}=.200[5,08]$
T2 $=.300 \pm .010[7,62 \pm 0,25]$
T3 $=.109 \pm .010[2,78 \pm 0,25$
$\mathbf{S 1}=.35 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

12A-PC - Triple Potentiometer, Single Shaft, Solder Pins

Dimension Notes:
$\mathbf{T 1}=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{T 3}=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: 1 \& 3, . 012 [0,405]; $2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
7. Drawings not to scale.

Section 4: Triple module, Single Shaft (continued)

13A - Dual Potentiometer, Single Rotary Switch, Solder Hooks
Switch Option specifications

Front View Rotation

13A-90 ${ }^{\circ}$ - Dual Potentiometer, Single Rotary Switch, Solder Hooks (Rotated Switch Module)

Notes:

1. Potentiometer Terminals - . 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 4: Triple module, Single Shaft (continued)

13A-PC - Dual Potentiometer, Single Rotary Switch, Solder Pins
Switch Option specifications

Bottom View

Rear View

Front View Rotation

13A-PC- 90° - Dual Potentiometer, Single Rotary Switch, Solder Pins(Rotated Switch Module)

Notes:

1. Potentiometer Terminals - . 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
7. Drawings not to scale.

Section 4: Triple module, Single Shaft (continued)

13B - Single Potentiometer, Dual Rotary Switch, Solder Hooks
Switch Option specifications

13B-90- Single Potentiometer, Dual Rotary Rotary Switch, Solder Hooks (Rotated Switch Module)

Bottom View

Rear View

Front View Rotation

```
Dimension Notes:
    T1 =. 200 [5,08]
    T1 =.200[5,08] 
    S1 =.350\pm.010[8,89\pm0,25]
    S2 =.375 \pm.010[8,89\pm9,52]
    Switch terminal hole size: .045 \pm.005 \times.095 \pm.005[1,14\pm0,13 \times 2,41 \pm0,13]
```


Notes:

1. Potentiometer Terminals - 031 [,81] Dia., Soft Copper Cda Alloy 110 , Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 4: Triple module, Single Shaft (continued)

13B-PC - Single Potentiometer, Dual Rotary Switch, Solder Pins

Top View

Dimension Notes:
T1 $=.200[5,08]$
T2 $=.300 \pm .010[7,62 \pm 0,25]$
T3 $=.109 \pm .010[2,78 \pm 0,25]$
S1 $=.350 \pm .010[89+05]$
S2
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

Top View
on Notes
$\mathrm{T} 1=.200[5,08]$
$T 2=.300 \pm .010[7,62 \pm 0,25]$
$\mathrm{T} 3=.109 \pm .010[2,78 \pm 0,25]$
$\mathrm{S} 1=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

Bottom View

Front View

Front View Rotation

Notes:

1. Potentiometer Terminals - .031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
7. Drawings not to scale.

Section 5: Triple module, Concentric Shaft

15A - Triple Potentiometer, Concentric Shaft, Solder Hooks

As shown, Outer Shaft operates First Section

Dimension Notes:
$\mathrm{T} 1=.200[5,08]$
$\mathrm{T} 2=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{T 3}=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

15A-PC - Triple Potentiometer, Concentric Shaft, Solder Pins

As shown, Outer Shaft operates First Section

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 5: Triple module, Concentric Shaft

15C - Triple Potentiometer, Concentric Shaft, Solder Hooks

As shown, Outer Shaft operates sections $1 \& 2$, Inner Shaft section 3

Dimension Notes:
T1 = . $200[5,08]$
$\mathrm{T} 1=.200[5,08]$
$\mathbf{T} 2=.300 \pm .010[7,62 \pm 0,25]$
$\mathrm{T}=.10$
$\mathbf{T} 2=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{T 3}=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{T 3}=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

15C-PC - Triple Potentiometer, Concentric Shaft, Solder Pins

As shown, Outer Shaft operates sections $1 \& 2$, Inner Shaft section 3

Dimension Notes
$\mathrm{T} 1=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
T3 $=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
7. Drawings not to scale.

Section 5: Triple module, Concentric Shaft (continued)

16A - Dual Potentiometer, Rotary Switch, Concentric Shaft, Solder Hooks
Switch Option specifications

16A-90 ${ }^{\circ}$ - Dual Potentiometer, Rotary Switch, Concentric Shaft, Solder Hooks (Rotated Switch Module)

Bottom View

Top View

Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 5: Triple module, Concentric Shaft (continued)

16A-PC - Dual Potentiometer, Rotary Switch, Concentric Shaft, Solder Pins
Switch Option specifications

16A-PC-90 ${ }^{\circ}$ - Dual Potentiometer, Rotary Switch, Concentric Shaft, Solder Pins (Rotated Switch Module)

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 6: Quad module, Single Shaft

23A - Quad Potentiometer, Single Shaft, Solder Hooks

Dimension Notes:
$\mathrm{T} 1=.200[5,08]$
$\mathbf{T 2}=.300 \pm .010[7,62 \pm 0,25]$
$\mathrm{T3}=.109 \pm .010[2,78 \pm 0,25]$
S1 $=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

23A-PC - Quad Potentiometer, Single Shaft, Solder Pins

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
7. Drawings not to scale.

Section 6: Quad module, Single Shaft (continued)

23D - Triple Potentiometer, Rotary Switch, Solder Hooks
Switch Option specifications

Bottom View

Rear View

23D-90 - Triple Potentiometer, Rotary Switch, Solder Hooks (Rotated Switch Module)

Rear View

Front View Rotation

Dimension Notes:
$\mathrm{T} 1=.200[5,08]$
$\mathrm{T} 3=.109 \pm .010[2,78 \pm 0,25]$
$\mathrm{T} 4=.300 \pm .010[7.62 \pm 0,25]$
T4 $=.300 \pm .010[7,62 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 9,52]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

Notes:

1. Potentiometer Terminals - 031 [,81] Dia., Soft Copper Cda Alloy 110 , Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
7. Drawings not to scale.

Section 6: Quad module, Single Shaft (continued)

Switch Option specifications

$\begin{aligned} & \text { Dimension Notes: } \\ & \text { T1 }=200[5,08] \\ & \text { T2 }=300 \pm .010[7,62 \pm 0,25] \\ & \text { T3 }=109 \pm .010,78 \pm 0,25] \\ & \mathbf{S 1}=.350 \pm .010[8,89 \pm 0,25] \\ &=\end{aligned}$
$51=.350 \pm .010[8,89 \pm 0,25$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$
23D-PC-90 ${ }^{\circ}$ - Triple Potentiometer, Rotary Switch, Solder Pins (Rotated Switch Module)

Notes:

1. Potentiometer Terminals - . 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

Section 7: Quad module, Concentric Shaft

26A - Quad Potentiometer, Solder Hooks

As shown, Outer Shaft operates first two sections

Dimension Notes:
$\mathrm{T} 1=.200[5,08]$
$\mathbf{T} 2=.300 \pm .010[7,62 \pm 0,25]$
T3 $=.109 \pm .010[2,78 \pm 0,25]$
$\mathbf{S 1}=.350 \pm .011[8,89 \pm 0,25]$
$\mathbf{S 2}=.375 \pm .010[8,89 \pm 0,25]$
Switch terminal hole size: $.045 \pm .005 \times .095 \pm .005[1,14 \pm 0,13 \times 2,41 \pm 0,13]$

26A-PC - Quad Potentiometer, Solder Pins

Notes:

1. Potentiometer Terminals - .031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: 1 \& 3,. 012 [0,405]; 2 \& 4, $.018[0,457]$
4. All drawings are shown with $3 / 8$ " dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4$ " dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
7. Drawings not to scale.

Section 7: Quad module, Concentric Shaft (continued)

27A - Triple Potentiometer, Rotary Switch, Solder Hooks
Switch Option specifications

27 A-90́ - Triple Potentiometer, Rotary Switch, Solder Hooks (Rotated Switch Module)

Rear View

Front View Rotation ${ }^{25^{\circ}}$

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified.
6. Drawings not to scale.

Section 7: Quad module, Concentric Shaft (continued)

27A-PC - Triple Potentiometer, Rotary Switch, Solder Pins
Switch Option specifications

27A-PC-90 - Triple Potentiometer, Rotary Switch, Solder Pins (Rotated Switch Module)

Notes:

1. Potentiometer Terminals - 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$
4. All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\prime \prime}$ dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options
6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016$ [0,40], except as specified
7. Drawings not to scale.

28B-90 - Potentiometer, Rotary Switch, Potentiometer, Rotary Switch, Solder Hooks (Rotated Switch Modules)

Bottom View

Front View

Notes:

1. Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
2. Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate.
3. Switch Terminal Thickness: $1 \& 3, .012[0,405] ; 2 \& 4, .018[0,457]$

4. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
5. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
6. Drawings not to scale.

RECOMMENDED PC BOARD LAYOUTS

SINGLE SHAFT

DUAL SECTION

TRIPLE SECTION

CONCENTRIC SHAFTS

Bushing \& Shaft Dimensions
1/4" Standard Flatted Shaft

1/4" Standard Concentric Flatted Shaft

1/4" Standard Slotted Shaft

1/4" Standard Concentric Slotted Shaft

1/8" Standard Slotted Shaft

1/8" Concentric Shafts

Flat will extend to within $.031[0,79]$ of mounting bushing where shaft length will not permit standard flat.

All shafts are shown in extreme counterclockwise position. Angle applies to potentiometers only.

Shaft Flat Orientations

(Other Angles Available)

Standard Bushing and Shaft Dimensions are shown on Page 11

Bushing \& Shaft Combinations

Type	Shaft Dia. Inch [mm]	Used With Bushing Inch [mm]	Shaft Ending		
			Slotted	Flatted	Plain
Single Shaft	. 250 [6,35] Dia. Solid	. 375 [9,52] Dia. Bushing	X	X	X
Single Shaft	. 125 [3,18] Dia. Solid	. 250 [6,35] Dia.Bushing	X	X	X
Concentric Shaft	. 250 [6,35] Dia. Outer Hollow	. 375 [9,52] Dia. Bushing	X	X	X
	. 125 [3,17] Dia. Inner Solid		X	X	X
Concentric Shaft	. 125 [3,17] Dia. Outer Hollow	. 250 [6,35] Dia. Bushing	X	X	X
	.078" [1,98] Solid Inner		N/A	N/A	X

Popular Shaft Lengths

Fraction	Inch	Metric
$1 / 4$.250	6,35
$3 / 8$.375	9,52
$7 / 16$.4375	11,11
$1 / 2$.500	12,70
$5 / 8$.625	15,88
$3 / 4$.750	19,05
$7 / 8$.875	22,23
1	1.00	25,40
$1-1 / 8$	1.125	28,58
$1-1 / 4$	1.25	31,75
$1-1 / 2$	1.50	38,10
2	2.00	50,80
$2-1 / 2$	2.50	63,50
3	3.00	76,20

Popular BushingLengths

Diameter Inch [mm]	Type	Length Inch [mm]	
$.250[6,35]$	Plain	$.250[6,35]$	
		$.375[9,52]$	
		$.500[12,7]$	
	Locking	$.375[9,52]$	
		$.500[12,7]$	
$375[9,52]$	Plain	$.250[6,35]$	
		$.375[9,52]$	
		$.500[12,7]$	
	Locking	$.375[9,52]$	
		$.500[12,7]$	

- Shaft and Bushing lengths are both measured from the mounting surface (FMS).
- The inner shaft on a concentric shaft design must be sufficiently longer than the outer shaft to accommodate a knob.
- A shaft flat must end be at least $0.312[0,79]$ above the top of the bushing.
- We can manufacturer any other bushing or shaft profile to meet your requirements.
- Metric sized shafts and bushing are available.

Bushing and Hardware Dimensions

3/8" Plain Bushing

"B" STANDARD BUSHING LENGTHS
.250 [6,35] - . 375 [9,53] - . 500 [12.7]

3/8" Locking Bushing

Mounting Hardware for 3/8" Bushing

LOCK WASHER

MOUNTING NUT

LOCK NUT

MAXIMUM MOUNTING PANEL THICKNESS: .062-. 188 [1,59-4,76] when used with one standard M-2898 Lock Washer and one standard M-2786 Mounting Nut

1/4" Locking Bushing

Mounting Hardware for 1/4" Bushing

Standard Bushing and Shaft Dimensions are shown on Page 11

Dimensions
Basic dimensions are in inches. Dimensions shown in brackets are in millimeters.

Tolerance

Dimensional tolerance $\pm .016[0,40]$
Angular tolerance $\pm 5^{\circ}$, except as specified

DIMENSIONS

Locating Lug Options - Series S159

Options A, B \& C (.305 Center) Option C is standard and is used unless otherwise specified

 $3 \& 9$ o'clock / 90 \& 270°

OPTION A single right lug $90^{\circ} / 3$ o'clock

Options J, K \& J9 (.347 Center) Compatible with Mil-Spec RV5

Options 6, 7 and C (.437 Center) Special Order Only

Options 8, 9 and D(.531 Center) Compatible with Mil-Spec RV4

9 o'clock / 270°

OPTION ?? Extended left \& right lug $3 \& 9$ o'clock / 90 \& 270°

OPTION E Extended right lug $90^{\circ} / 3$ o'clock

Basic dimensions in inches.
Dimensions in brackets are in millimeters.
TOLERANCE
Dimensional tolerance $\pm .016[0,40]$ except as specified.
NOT TO SCALE

1/4" Diameter Bushing - DIMENSION B

Minimum hole dia. for $1 / 4$ " dia. bushing $=.261[6,63]$

3/8" Diameter Bushing - DIMENSION B

Minimum hole dia. for 1/4" dia. bushing = . 406 [10,31]

ANTI-ROTATION LUG OPTIONS

$\begin{gathered} \text { "A" } \\ \text { LUG LOCATION } \end{gathered}$	LUG OPTION	Number of Lugs	ORIENTATION Clockwise (CW) from top of potentiometer	DIMENSION "D" Anti-Rotation Lug Hole dia.
$0.305 "$$[7,75]$MOD-POT ${ }^{\text {M }}$	D	0	0^{0} (12 o'clock)	Not required
		1	90° (3 o'clock)	. 096 [2,44]
		1	180° (6 o'clock)	
	C (std)	1	270° (9 o'clock)	
		1	$0^{\circ} \& 180^{\circ}$	
		2	$90^{\circ} \& 270^{\circ}$	
		2	$0^{\circ} \& 180^{\circ}$	
$\begin{gathered} .375 " \\ {[9,52]} \\ \text { MIL-R-94 } \\ \text { RV5 } \end{gathered}$		0	0^{0} (12 o'clock)	Not required
	J	1	90° (3 o'clock)	. 096 [2,44]
		1	180° (6 o'clock)	
	K	1	270° (9 o'clock)	
	SPECIAL	1	$0^{\circ} \& 180^{\circ}$	
	E	2	$90^{\circ} \& 270^{\circ}$	
	N	2	$0^{\circ} \& 180^{\circ}$	
$\begin{gathered} .437 \\ {[11,10]} \\ \\ \text { MIL-R-94 } \\ \text { RV2 } \end{gathered}$	N	0	0^{0} (12 o'clock)	Not required
		1	90° (3 o'clock)	. 128 [3,24]
	SPECIAL	1	180° (6 o'clock)	
	E	1	270° (9 o'clock)	
		1	0° \& 180°	
		2	90° \& 270°	
		2	$0^{\circ} \& 180^{\circ}$	
$\begin{gathered} .531 \\ {[13,49} \end{gathered}$		0	0^{0} (12 o'clock)	Not required
		1	90° (3 o'clock)	. 128 [3,24]
		1	180° (6 o'clock)	
		1	270° (9 o'clock)	
$\begin{gathered} \text { MIL-R-94 } \\ \text { RV4 } \end{gathered}$		1	0° \& 180°	
		2	90° \& 270°	
		2	0° \& 180°	

Ordering Information - Single Turn Potentiometers
Example Part Number: S159PC-A3A-B24-A103-A103-SW50CW (Two 10K Potentiometer Modules, plus Rotary Switch Module)

Design considerations:

1. The shaft diameter will determine the bushing diameter.
2. Shaft and bushing lengths are always measured from the mounting surface (FMS), and therefore the shaft length is always greater than the bushing length.
3. Imperial shaft \& bushing lengths shown above are designated in 32 nds : $24=24 / 32$ " or $3 / 4$ of an inch.
4. Special shaft and bushings lengths or profiles are available. Full list of shaft length codes - See page page 37

The part numbering format shown above is for pre-production specifications only and will not be the same as the production version. Once a design has been finalized a unique identifier is assigned which reflects all of the options approved by the customer. Due to the unlimited number of feature combinations, it may not be possible to use the above to specify your requirement. All of the specifications listed in this catalog may not apply to certain combinations of options.

For pricing and delivery information, Create an RFQ on our website or contact a State Electronics Sales Specialist at 800-631-8083.

MOD-POT ${ }^{2 \mathrm{TM}}$ Potentiometer - Single Turn Potentiometer Configuration Options

SINGLE SHAFT

		Section \#							
Total Sections	$\begin{gathered} \text { MP2 } \\ \text { Config \# } \end{gathered}$	Panel 1	2	3	4	5	6	7	8
1	1	S							
2	2	S	S						
3	3	S	S	S					
4	4	S	S	S	S				
5	5	S	S	S	S	S			
6	6	S	S	S	S	S	S		
7	7	S	S	S	S	S	S	S	
8	8	S	S	S	S	S	S	S	S

CONCENTRIC SHAFTS

		Section \#							
		O = Section Controlled by Outer Shaft				I = Section Controlled by Inner Shaft			
Total Sections	$\begin{gathered} \text { MP2 } \\ \text { Config } \end{gathered}$	Panel 1	2	3	4	5	6	7	8
2	11	0	1						
3	21	0	O	1					
3	12	0	1	1					
4	22	0	0	1	1				
4	31	0	0	0	1				
4	13	0	1	1	1				
5	41	0	0	0	0	1			
5	32	0	0	0	1	1			
5	23	0	0	1	1	1			
5	14	0	1	1	1	1			
6	51	0	0	0	0	0	I		
6	42	0	0	0	0	1	1		
6	33	0	0	0	1	1	1		
6	24	0	0	1	1	1	1		
6	15	0	1	1	1	1	1		
7	61	0	0	0	0	0	0	1	
7	52	0	0	0	0	0	1	1	
7	43	0	0	0	0	1	I	1	
7	34	0	0	0	1	1	1	1	
7	25	0	0	1	1	1	1	1	
7	16	0	1	1	1	1	1	1	
8	71	0	0	0	0	0	0	0	1
8	62	0	0	0	0	0	0	1	1
8	53	0	0	0	0	0	I	1	1
8	44	0	0	0	0	1	1	1	1
8	35	0	0	0	1	1	1	1	1
8	26	0	0	1	1	1	1	1	1
8	17	0	1	1	1	1	1	1	1

MOD-POT ${ }^{2}$ Potentiometer - Shaft Length Codes

Fraction	Shaft Code 32nds	FMS in.	FMS mm
$1 / 32$	01	0.03125	0,7938
$1 / 16$	02	0.06250	1,5875
$3 / 32$	03	0.09375	2,3813
$1 / 8$	04	0.12500	3,1750
$5 / 32$	05	0.15625	3,9688
$3 / 16$	06	0.18750	4,7625
$7 / 32$	07	0.21875	5,5563
$1 / 4$	08	0.25000	6,3500
$9 / 32$	09	0.28125	7,1438
$5 / 16$	10	0.31250	7,9375
$11 / 32$	11	0.34375	8,7313
$3 / 8$	12	0.37500	9,5250
$13 / 32$	13	0.40625	10,3188
$7 / 16$	14	0.43750	11,1125
$15 / 32$	15	0.46875	11,9063
$1 / 2$	16	0.50000	12,7000
$17 / 32$	17	0.53125	13,4938
$9 / 16$	18	0.56250	14,2875
$19 / 32$	19	0.59375	15,0813
$5 / 8$	20	0.62500	15,8750
$21 / 32$	21	0.65625	16,6688
$11 / 16$	22	0.68750	17,4625
$23 / 32$	23	0.71875	18,2563
$3 / 4$	24	0.75000	19,0500
$25 / 32$	25	0.78125	19,8438
$13 / 16$	26	0.81250	20,6375
$27 / 32$	27	0.84375	21,4313
$7 / 8$	28	0.87500	22,2250
$29 / 32$	29	0.90625	23,0188
$15 / 16$	30	0.93750	23,8125
$31 / 32$	31	0.96875	24,6063
1	100	1.00000	25,4000
10			

Fraction	Shaft Code 32nds	FMS in.	FMS mm
$1-1 / 32$	101	1.0313	26,1938
$1-1 / 16$	102	1.0625	26,9875
$1-3 / 32$	103	1.0938	27,7813
$1-1 / 8$	104	1.1250	28,5750
$1-5 / 32$	105	1.1563	29,3688
$1-3 / 16$	106	1.1875	30,1625
$1-7 / 32$	107	1.2188	30,9563
$1-1 / 4$	108	1.2500	31,7500
$1-9 / 32$	109	1.2813	32,5438
$1-5 / 16$	110	1.3125	33,3375
$1-11 / 32$	111	1.3438	34,1313
$1-3 / 8$	112	1.3750	34,9250
$1-13 / 32$	113	1.4063	35,7188
$1-7 / 16$	114	1.4375	36,5125
$1-15 / 32$	115	1.4688	37,3063
$1-1 / 2$	116	1.5000	38,1000
$1-17 / 32$	117	1.5313	38,8938
$1-9 / 16$	118	1.5625	39,6875
$1-19 / 32$	119	1.5938	40,4813
$1-5 / 8$	120	1.6250	41,2750
$1-21 / 32$	121	1.6563	42,0688
$1-11 / 16$	122	1.6875	42,8625
$1-23 / 32$	123	1.7188	43,6563
$1-3 / 4$	124	1.7500	44,4500
$1-25 / 32$	125	1.7813	45,2438
$1-13 / 16$	126	1.8125	46,0375
$1-27 / 32$	127	1.8438	46,8313
$1-7 / 8$	128	1.8750	47,6250
$1-29 / 32$	129	1.9063	48,4188
$1-15 / 16$	130	1.9375	49,2125
$1-31 / 32$	131	1.9688	50,0063
2	200	2.0000	50,8000

Fraction	Shaft Code 32nds	FMS in.	FMS mm
$2-1 / 32$	201	2.0313	51,5938
$2-1 / 16$	202	2.0625	52,3875
$2-3 / 32$	203	2.0938	53,1813
$2-1 / 8$	204	2.1250	53,9750
$2-5 / 32$	205	2.1563	54,7688
$2-3 / 16$	206	2.1875	55,5625
$2-7 / 32$	207	2.2188	56,3563
$2-1 / 4$	208	2.2500	57,1500
$2-9 / 32$	209	2.2813	57,9438
$2-5 / 16$	210	2.3125	58,7375
$2-11 / 32$	211	2.3438	59,5313
$2-3 / 8$	212	2.3750	60,3250
$2-13 / 32$	213	2.4063	61,1188
$2-7 / 16$	214	2.4375	61,9125
$2-15 / 32$	215	2.4688	62,7063
$2-1 / 2$	216	2.5000	63,5000
$2-17 / 32$	217	2.5313	64,2938
$2-9 / 16$	218	2.5625	65,0875
$2-19 / 32$	219	2.5938	65,8813
$2-5 / 8$	220	2.6250	66,6750
$2-21 / 32$	221	2.6563	67,4688
$2-11 / 16$	222	2.6875	68,2625
$2-23 / 32$	223	2.7188	69,0563
$2-3 / 4$	224	2.7500	69,8500
$2-25 / 32$	225	2.7813	70,6438
$2-13 / 16$	226	2.8125	71,4375
$2-27 / 32$	227	2.8438	72,2313
$2-7 / 8$	228	2.8750	73,0250
$2-29 / 32$	229	2.9063	73,8188
$2-15 / 16$	230	2.9375	74,6125
$2-31 / 32$	231	2.9688	75,4063
3	300	3.0000	76,2000
2			

All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4^{\text {" diameter bushing with } 1 / 8 \text { " diameter shaft is available. }}$ Locking bushing is also available.

Refer to page 34 for Locating Lug options.

Potentiometer (pin terminal) module. Up to four modules of this type can be included in an assembly.

Potentiometer (solder hook) module. Up to four modules of this type can be included in an assembly.

Rotary Switch module. Multiple modules of this type can be included in an assembly. This module can be assembled sideways if needed for easier access to solder lugs.

Refer to page 38 for Switch options.

Push-Pull or Push-Momentary module. single module of this type can be included in an assembly, but must be the last module. This module can be assembled sideways if needed for easier access to solder lugs.

Refer to page 38 for Switch options.

Concentric Spacer is installed between resistive modules or when a rotary switch follows a rotary switch with concentric shaft construction.

Backplate

Note: Most parameters (wattage rating, rotational torque, etc.) are affected by the total number of sections. Download full specifications for further details.

SNOILdO SヨIYヨS wıłOd-pow

Series S159-10 5/8" Modular Precision 10-Turn Potentiometer

Description:

The Series S159-10 Precision 10-Turn Potentiometer modules are $5 / 8$ " square [15.88 mm], with metal shaft and bushing.
Wirewound or Hybrid elements are available. Hybrid utilizes a wirewound element covered with a conductive plastic coating, which offers temperature stability, low-noise, and virtually infinite resolution. Combine up to 2 modules.
For more information about this product, visit our website at: www.potentiometers.com

Electrical Specifications

Resistance Range - Wirewound Element J Linear Taper: 200 ohms to 100 K ohms

Resistance Range - Hybrid Element K Linear Taper: 1 K ohms to 100 K ohms

Total Resistance Tolerance
Wirewound: $\pm 5 \%$
Hybrid: $\pm 10 \%$
Independent Linearity: $\pm 0.25 \%$
Absolute Minimum Resistance:
Wirewound: 1.0 ohm or 0.1% (whichever is greater)
Effective Electrical Angle: $3600^{\circ}+10,-0^{\circ}$
Dielectric Withstanding Voltage (MIL-STD-202 - Method 301) Sea Level: 1,000 VAC minimum
Insulation Resistance: 1,000 megohms minimum
Power Rating: $+70^{\circ} \mathrm{C}: 1$ watt; $+125^{\circ} \mathrm{C}: 0$ watt
(Voltage limited by power dissipation or 350 VAC, whichever is less
Theoretical Resolution:
Wirewound: See table
Hybrid: Essentially Infinite
End Voltage
Hybrid (K Taper): 0.2\% of applied voltage
Noise:
Wirewound: (J Taper): 100 ohms
Output Smoothness
Hybrid (K Taper): 0.15\% maximum

Features:

- 5/8" Square Modular 10-Turn Panel Control

- Stackable - up to 2 modules
- Linear Taper
$\cdot \pm 0.25 \%$ Independent Linearity
- Wirewound or Hybrid Element
- Metal Shaft and Bushing
- PCB or Solder Lug Terminals
- IP40 Rating
- RoHS Compliant

Mechanical Specifications

Mechanical Angle: $3600^{\circ}+15^{\circ},-0^{\circ}$
Stop Strength: $33.90 \mathrm{~N}-\mathrm{cm}$ (48.0 oz.-in.) minimum

Starting Torque:
Running torque plus $0.7 \mathrm{~N}-\mathrm{cm}$ (1.0 oz.-in.) max
Running Torque (1 or 2 sections):
0.18 to $1.41 \mathrm{~N}-\mathrm{cm}$ (0.25 to 2.0 oz.-in.)

Mounting Torque (Torque on Bushing):
1.7-2.0 N-m (15-18 lb.-in.) maximum

Shaft Runout: 0.15 mm (0.006 in.) T.I.R.
Shaft End Play: 0.36 mm (0.014 in.) T.I.R.
Shaft Radial Play: 0.13 mm (0.005 in.) T.I.R.
Weight: Single Section - 21 gm (0.75 oz.)
Each additional Section: 18 gm (0.65 oz .)
Terminals: Printed circuit terminals or solder lugs
Soldering Condition:
Recommended hand soldering using Sn95/Ag5
no clean solder, $0.025^{\prime \prime}$ wire diameter.
Maximum temperature $399^{\circ} \mathrm{C}\left(750^{\circ} \mathrm{F}\right)$ for 3 seconds.
No wash process to be used with no clean flux.
Ganging (Multiple Section Potentiometers): 2 modules max.

Series S159-10 5/8" Modular Precision 10-Turn Potentiometer

Environmental Specifications

Dimensional Drawings
Operating Temperature Range: $+1^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Temperature Coefficient over Storage Range:
Wirewound: $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$;
Hybrid: $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Vibration (Single Section): 15 G
Total Resistance Shift: $\pm 2 \%$ maximum
Voltage Ratio Shift: $\pm 0.2 \%$ maximum
Wiper Bounce: 0.1 millisecond maximum
Shock (Single Section): 50 G
Total Resistance Shift: $\pm 2 \%$ maximum Voltage Ratio Shift: $\pm 0.2 \%$ maximum Wiper Bounce: 0.1 millisecond maximum

Load Life: 1,000 hours
Wirewound: Total Resistance Shift: $\pm 2 \%$ max. Hybrid: Total Resistance Shift: $\pm 5 \%$ max.
Rotational Life - Wirewound (No Load): $1,000,000$ shaft revolutions, $\pm 5 \%$ TRS maximum

Rotational Life - Hybrid (No Load):
4,000,000 shaft revolutions, $\pm 5 \%$ TRS maximum
Moisture Resistance (MIL-STD-202, Method 103, Condition B) Wirewound: $\pm 2 \%$ Total Resistance Shift max. Hybrid: $\pm 5 \%$ Total Resistance Shift max.

Insulation Resistance (500 VDC): 100 megohms minimum
IP Rating: IP40

Wirewound Resolution Table

Resistance (Ohms)	Resolution (Nom.) (\%)
200	.048
500	.037
1 K	.032
2 K	.031
5 K	.023
10 K	.020
20 K	.015
50 K	.012
100 K	.010

Series S159-10 5/8" Modular Precision 10-Turn Potentiometer

Dimensional Drawings

Solder Lug Model S159-10-SL

Shaft Flat Orientation

"C" Bushing
1/4 " (6.35 mm) Dia. Plain - Single Shaft

"E" Bushing
1/4 " (6.35 mm) Dia. Locking - Single Shaft

"A" Bushing

3/8" (9.53 mm) Dia. Plain - Concentric Shaft

OUTER SHAFT $\frac{6.32}{(.249)}$ DIA. OPERATES SECTION \#1 INNER SHAFT $\frac{3.18}{(.125)}$ DIA. OPERATES SECTION \#2, \#3, \& \#4 ("G" STYLE)

"C" Bushing

1/4" (6.35 mm) Dia. Plain - Concentric Shaft

Locating Lug Options

TOLERANCES EXCEPT AS SHOWN: DECIMALS .XXX $\pm \frac{.127}{(.005)}$

$\mathrm{XX} \pm \frac{.38}{(.015)}$
$\mathrm{ANGLE} \pm 5^{\circ}$

FRACTIONS $\pm 1 / 64$

DIMENSIONS: $\frac{M M}{(I N C H E S)}$

NOTE: "D" OPTION - NO A/R LUG. OTHER LOCATING LUG OPTIONS AVAILABLE. FOR DETAILS CONSULT FACTORY.

Example Part Number: S159-10-PC-A2A-B28-J103

For pricing and delivery information, Create an RFQ on our website or Contact your State Electronics Sales Representative at 973-887-2550

Input and Output Terms

Output Voltage

(e) The voltage between the wiper terminal and the designated reference point. Unless otherwise specified, the designated reference point is the CCW terminal (See 3.1).

Figure 1
Circuit and Travel Diagram

Output Ratio

(e/E) The ratio of the output voltage to the designated input reference voltage. Unless otherwise specified, the reference voltage is the total applied voltage.

Rotation and Translation

Total Mechanical Travel

The total travel of the shaft between integral stops, under the specified stop load. In potentiometers without stops, the mechanical travel is continuous.

Mechanical Overtravel - Wirewound

The shaft travel between each End Point (or Theoretical End Point for Absolute Conformity or Linearity units) and its adjacent corresponding limit of Total Mechanical Travel.

Mechanical Overtravel

The shaft travel between each Theoretical End Point and its adjacent corresponding limit of Total Mechanical Travel.

Backlash

The maximum difference in shaft position that occurs when the shaft is moved to the same actual Output Ratio point from opposite directions.

Theoretical Electrical Travel

The specified shaft travel over which the theoretical function characteristic extends between defined Output Ratio limits, as determined from the Index Point.

Electrical Overtravel - Nonwirewound

The shaft travel over which there is continuity between the wiper terminal and the resistance element beyond each end of the Theoretical Electrical Travel.

Electrical Continuity Travel

The total travel of the shaft over which electrical continuity is maintained between the wiper and the resistance element.

Tap Location

The position of a tap relative to some reference. This is commonly expressed in terms of an Output Ration and/or a shaft position. When a shaft position is specified, the Tap Location is the center of the Effective Tap Width.

Resistance

End Resistance

The resistance measured between the wiper terminal and an end terminal with the shaft positioned at the corresponding End Point.

Temperature Coefficient Of Resistance

The unit change in resistance per degree celsius change from a reference temperature, expressed in parts per million per degree celsius as follows:

$$
T . C .=\frac{R_{2}-R_{1}}{R_{1}\left(T_{2}-T_{1}\right)} \times 106
$$

Where:
R1 = Resistance at reference temperature in ohms.
R2 $=$ Resistance at test temperature in ohms
T1 = Reference temperature in degrees celsius.
T2 $=$ Test temperature in degrees celsius.

Conformity and Linearity

Linearity

A specific type of conformity where the theoretical function characteristic is a straight line.

Mathematically:

$$
\frac{e}{E}=f(W) \pm C=A(W)+B \pm C
$$

Where:
A is the given slope; B is given intercept at $\mathrm{W}=0$.
W = Angle or slope

Absolute Linearity

The maximum deviation of the actual function characteristic from a fully defined straight reference line. It is expressed as a percentage of the Total Applied Voltage and measured over the Theoretical Electrical Travel. An Index Point on the actual output is required.

DISCLAIMER

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

State Electronics Parts Corp., Inc., Its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "State Electronics"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. State Electronics makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.
To the maximum extent permitted by applicable law, State Electronics disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on State Electronics' knowledge of typical requirements that are often placed on State Electronics products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify State Electronics' terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, State Electronics products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the State Electronics product could result in personal injury or death. Customers using or selling State Electronics products not expressly indicated for use in such applications do so at their own risk. Please contact authorized State Electronics personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of State Electronics. Product names and markings noted herein may be trademarks of their respective owners.

36 Route 10, STE 6
East Hanover, NJ 07936-0436
Phone 973-887-2550
Toll Free 1-800-631-8083
FAX 973-887-1940
http://www.potentiometers.com

General Electrical Characteristics

Noise

Any spurious variation in the electrical output not present in the input, defined quantitatively in terms of an equivalent parasitic, transient resistance in ohms, appearing between the contact and the resistance element when the shaft is rotated or translated. The Equivalent Noise Resistance is defined independently of the resolution, the functional characteristics, and the total travel. The magnitude of the Equivalent Noise Resistance is the maximum departure from a specified reference line. The wiper of the potentiometer is required to be excited by a specified current and moved at a specified speed.

Output Smoothness

(Non-wirewound Potentiometers Only)

Output Smoothness is a measurement of any spurious variation in the electrical output not present in the input. It is expressed as a percentage of the Total Applied Voltage and measured for specified travel increments over the Theoretical Electrical Travel. Output Smoothness includes effects of contact resistance variations, resolution, and other micrononlinearities in the output.

Resolution

A measure of the sensitivity to which the Output Ratio of the potentiometer may be set.

Dielectric Strength

Ability to withstand under prescribed conditions, a specified potential of a given characteristic between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang without exceeding a specified leakage current value.

Insulation Resistance

The resistance to a specified impressed DC voltage between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang, under prescribed conditions.

Power Rating

The maximum power that a potentiometer can dissipate under specified conditions while meeting specified performance requirements.

Power Derating

The modification of the nominal power rating for various considerations such as Load Resistance, Output Slopes, Ganging, nonstandard environmental conditions and other factors.

Life

The number of shaft revolutions or translations obtainable under specific operating conditions and within specified allowable degradations of specific characteristics.

Mechanical Characteristics

Shaft Runout

The eccentricity of the shaft diameter with respect to the rotational axis of the shaft, measured at a specified distance from the end of the shaft. The body of the potentiometer is held fixed and the shaft is rotated with a specified load applied radially to the shaft. The eccentricity is expressed in inches, TIR.

Lateral Runout

The perpendicularity of the mounting surface with respect to the rotational axis of the shaft, measured on the mounting surface at a specified distance from the outside edge of the mounting surface. The shaft is held fixed and the body of the potentiometer is rotated with specified loads applied radially and axially to the body of the pot. The Lateral Runout is expressed in inches.

Shaft Radial Play

The total radial excursion of the shaft, measured at a specified distance from the front surface of the unit. A specified radial load is applied alternately in opposite directions at a specified point. Shaft Radial Play is expressed in inches.

Shaft End Play

The total axial excursion of the shaft, measured at the end of the shaft with a specified axial load supplied alternately in opposite directions. Shaft End Play is expressed in inches.

Starting Torque

The maximum moment in the clockwise and counterclockwise directions required to initiate shaft rotation anywhere in the Total Mechanical Travel.

Running Torque

The maximum moment in the clockwise and counterclockwise directions required to sustain uniform shaft rotation at a specified speed throughout the Total Mechanical Travel.

Moment of Inertia

The mass moment of inertia of the rotating elements of the potentiometer about their rotational axis.

Static Stop Strength

The maximum static load that can be applied to the shaft at each mechanical stop for a specified period of time without permanent change of the stop positions greater than specified.

Dynamic Stop Strength

The inertia load, at a specified shaft velocity and a specified number of impacts, that can be applied to the shaft at each stop without a permanent change of the stop position greater than specified.

Orders

All orders are subject to acceptance by State Electronics, E. Hanover, NJ. No order or contract shall be deemed accepted unless and until such acceptance is made in writing by State

Electronics.

All agreements are more contingent upon strikes, accidents or causes of delay beyond our control

Prices and Specifications

Prices, quotations, specifications and other terms and all statements appearing in the Company's catalogs and advertisements, and otherwise made by the Company, are subject to change without notice. State Electronics reserves the right to make changes in design at any time without incurring any obligation to provide same units previously purchased or to continue to supply discontinued items. The specifications shown in the sales literature are not always the latest version. Certified current specification prints are available upon request.

Unless specifically provided in writing, prices quoted are based upon manufacture of quantities and types originally specified and are subject to revision when interpretation or engineering changes are initiated by the customer. Quoted prices are based upon present cost of materials and labor and are subject to change without notice.

We are not responsible for typographical errors made in any of our publications or for stenographic or clerical errors made in preparations of quotations, all such errors are subject to correction.

Delivery

Delivery promise is based on our best estimate of the date material will be shipped from our factory and we assume no responsibility for losses, damage or consequential damages due to delays.

Terms of Payment

On approved orders, terms are net thirty (30) days from the date of invoice. The Company may at any time, when in its opinion the financial condition of the customer warrants it, either hold or suspend credit. In cases where credit is not established or satisfactory financial information is not available, the terms are credit card or bank transfer. Each shipment will be considered a separate and independent transaction and payment should be made accordingly.

Shipments

All shipments are made F.O.B. shipping point (unless otherwise specified) and packaging for domestic shipment is not included in the quoted price. When special domestic or export packaging is specified involving greater expense than is customary, a charge will be made to cover such extra expense. Unless otherwise specified, we will normally use the best, least expensive surface transportation. Reasonable care is exercised in packaging our products for shipment and no responsibility is assumed by the Company for delay, breakage or damage after having made delivery in good order to the carrier. All claims for breakage or damage should be made to the carrier, but will be glad to render all possible assistance in securing satisfactory adjustment of such claims.

Claims and Rejected Material

Claims for defective material must be made within 30 days of the customer's receipt of shipment.
No products may be returned without a return authorization (RMA).

Country of Origin

The S8x, 38X, 70 series and S159 MOD-POT ${ }^{\bullet}$ \& MOD-POT ${ }^{2}{ }^{\text {m }}$ potentiometer products are assembled in the United States at our facility located in East Hanover, New Jersey, USA, using globally sourced components.

The straight reference line may be fully defined by specifying the low and high theoretical end Output Rations separated by the Theoretical Electrical Travel. Unless otherwise specified, these end Output Rations are 0.0 and 1.0 respectively.

Mathematically:

$\frac{e}{E}=A\left(W / W_{T}\right)+B \pm C$

Where:

A is the given slope; B is given intercept at $W=0$.
Unless otherwise specified: $A-1 ; B=0$

Figure 2

Independent Linearity

The maximum deviation, expressed as a percent of the Total Applied Voltage, of the actual function characteristic from a straight reference line with its slope and position chosen to minimize deviations over the Actual Electrical Travel, or any specified portion thereof.

Note: End Voltage requirements, when specified, will limit the slope and position of the reference line.

Mathematically:

Where: $\frac{\mathrm{e}}{\mathrm{E}}=\mathrm{P}\left(\mathrm{W} / \mathrm{W}_{\mathrm{A}}\right)+\mathrm{Q} \pm \mathrm{C}$
P is unspecified slope; Q is unspecified intercept at $W=0$. And both are chosen to minimize C but are limited by the End Voltage requirements.

Figure 3 Independent Linearity

[^0]: Notes:
 Potentiometer Terminals -. 031 [,81] Dia., Soft Copper Cda Alloy 110, Tin Plate.
 Switch Terminals - Soft Copper Cda Alloy 110, Bottom Terminals, Plate 20 Microinches Gold, Top Terminals Tin Plate. Switch Terminal Thickness: $1 \& 3, .012$ [0,405]; 2 \& 4, $.018[0,457]$
 All drawings are shown with $3 / 8^{\prime \prime}$ dia. bushing with $1 / 4^{\prime \prime}$ dia. shaft. $1 / 4$ " dia. bushing with $1 / 8^{\prime \prime}$ dia. shaft is available. Locking bushing is also available.
 5. Refer to page 29 for Printed Circuit Board Layouts. Refer to page 30 for Bushing, Shaft and Hardware information. Refer to page 33 for Locating Lug options.
 6. Basic dimensions are in inches. Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
 7. Drawings not to scale.

