Series S88/S89 Custom Potentiometer Designer Guide

36 ROUTE 10, STE 6 • EAST HANOVER • NEW JERSEY • 07936
Phone 973-887-2550 • Toll Free 1-800-631-8083 • Fax 973-887-1940
Internet http://www.potentiometers.com

POTENTIOMETER PROTOTYPES

Now almost any special combination potentiometer you specify can be manufactured and shipped within days of ordering.
State Electronics Mod Pot ${ }^{T \mathrm{M}}$ potentiometers are modular in construction. Our extensive inventory allows us to produce prototype quantities of $1 / 2$ or $5 / 8$ inch square, conductive plastic and cermet potentiometers within 24 hours for most designs and even production quantities in a matter of days with our VIP service!

Over one billion combinations of single, dual, triple, quad arrangements, push-pull or RSes and hundreds of shaft terminal variations can be produced.
Shipped to customers throughout the world since 1980!

Series S88 Potentiometer

Conductive Plastic - $1 / 2$ inch square; .5 Watt

Series S89 Potentiometer

Cermet - $1 / 2$ inch square; 1 Watt

Description

The S88 and S89 series are $1 / 2 \mathrm{in}$. square, modular, stackable potentiometers. The basic construction suits the series for countless design options.
The S88 and S89 series can be found in a wide range of sophisticated systems in a broad scope of industries.

Features

- Small size- $1 / 2$ in. square
- Stackable - up to 8 modules
- Switches - rotary, push-pull, momentary push, and schadow.
- Versatility - various shaft, bushings, terminal styles, resistance values, tapers and tolerances. Available in Conductive Plastic or Thick Film Cermet

- RoHS Compliant

Special Features

- Detents - Center detent and 11 position detents available
- Seals - mounting and shaft seals
- Medium torque-1 to 6 oz.-in.

	Operational Specifications Resistive Modules Series S88	Operational Specifications Resistive Modules Series S89
Resistance Range	Linear: 100 ohm to 5 megohm Tapered: 500 ohm to 1 megohm See chart, page 7	Linear: 50 ohm to 5 megohm Tapered: 100 ohm to 1 megohm See chart, page 7
Resistance Tolerance	Linear: thru 500K ohm,$\pm 10 \%$; above 500 K ohm,$\pm 20 \%$. Tapered: thru 100 K ohm,$\pm 10 \%$; above 100 K ohm $\pm 20 \%$	Linear: $\pm 10 \% ; \pm 20 \%$ special Tapered: $\pm 10 \%$ Under 20 ohm $\pm 20 \%$
Taper	See Taper Curve charts on page 6 for standard and special tapers available	See Taper Curve charts on page 6 for standard and special tapers available
Taper Tolerance	$\pm 20 \%$ of nominal resistance at 50% $\pm 3 \%$ mechanical rotation	$\pm 20 \%$ of nominal resistance at 50% mechanical rotation
Independent Linearity	$\pm 5 \%$ standard with specials available	$\pm 5 \%$ standard with specials available
End Resistance	4 ohms max. each end linear and low side of taper. 1\% of total R high side of taper.	2 ohms max. each end (5 ohms - 2.5 K ohms) 4 ohms max. each end (above 2.5K)
Dynamic Noise (C.R.V.)	1.5\% of total R, standard linear; 1.0\% of total R, special linear; 2.2\% of total R, tapered.	3.0% of total R, standard linear; 1.5% of total R, special linear (500 ohms and above); 6.0% of total R, tapered.
Static Noise	Up to 30 K ohms - 20db; 100K ohms - 12 db ; 1 Megohms +3db	Up to 100 ohms -25 db ; 10K ohms - 15 db ; 100K ohms -10db.

	Operational Specifications Resistive Modules Series S88	Operational Specifications Resistive Modules Series S89
Power Rating	0.5 Watt @ $70^{\circ} \mathrm{C}$ bushing (panel) mounting 0.25 Watt @ $70^{\circ} \mathrm{C}$ PC mounting (no panel). Derate to 0 watts at $120^{\circ} \mathrm{C}$. Derate 50\% for non-linear tapers and Derate multiple sections $1 / 2$ wattage of panel unit.	1.0 Watt @ $85^{\circ} \mathrm{C}$ bushing (panel) mounting 0.5 Watt @ $85^{\circ} \mathrm{C}$ PC mounting (no panel) Derate to 0 watts at $150^{\circ} \mathrm{C}$. Derate 50\% for non-linear tapers and Derate multiple sections $1 / 2$ wattage of panel unit.
Working Voltage	350 Vdc across end terminals, but power not to exceed rating.	350 Vdc across end terminals, but power not to exceed rating.
Dielectric Withstanding Voltage (Glossary Definition Link)	750 VAC @ ATM pressure - 760mm Mercury, equivalent to sea level.	900 VAC single standard module and 750 VAC all non-standard constructions @ ATM pressure - 760mm Mercury, equivalentto sea level.
Dielectric Low Pressure	MIL-STD-202G Method 105C - Condition B, 350 VAC @ 3.4 in. [86,36mm] Mercury, equivalent to 50,000 feet.	MIL-STD-202G Method 105C - Condition B, 350 VAC @ 3.4 in. [86,36mm] Mercury, equivalent to 50,000 feet.
Insulation Resistance	1000 megohms minimum for dry, clean conditions @ $25^{\circ} \mathrm{C}$	1000 megohms minimum for dry, clean conditions @ $25^{\circ} \mathrm{C}$
Temperature Coefficient	See Temperature Resistance Change table on page 8	15 ohms to 100 ohms $250 \mathrm{MP} /{ }^{\circ} \mathrm{C}$. 100 ohms to 5 Megohms $150 \mathrm{MP} /{ }^{\circ} \mathrm{C}$ Temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
Tracking	10\% voltage ratio tracking between sections standard. Specials available.	10% voltage ratio tracking between sections standard. Specials available.
Electrical Rotation	$295^{\circ} \pm 5^{\circ}$	$295^{\circ} \pm 5^{\circ}$
Effective Rotation	$265^{\circ} \pm 7^{\circ}$ without switch; $240^{\circ} \pm 7^{\circ}$ with switch.	$265^{\circ} \pm 7^{\circ}-5^{\circ}$ without switch; $240^{\circ} \pm 7^{\circ}$ with switch.
Load Life	10% maximum change in resistance and within end resistance limits with rated power across element, at $70^{\circ} \mathrm{C}$ ambient temperature. Power applied 1.5 hours "on" 0.5 hours "off" for 1000 hours.	5\% maximum change in resistance and within end resistance limits with rated power across element, at $85^{\circ} \mathrm{C}$ ambient temperature. Power applied 1.5 hours "on" 0.5 hours "off" for 1000 hours.
Rotational Life	Potentiometer: 10\% maximum resistance change up to 50,000 cycles under load. Trimmer: 5,000 cycles	Potentiometer: 10\% maximum resistance change up to 25,000 cycles under load. Trimmer: 5,000 cycles
Low Temperature	Less than 3\% change in total R. Operating torque at $-40^{\circ} \mathrm{C}$ is 30 oz .-in.	Less than 2% change in total R. Operating torque at $-40^{\circ} \mathrm{C}$ is 30 oz .-in.
	Operational Specifications RS	Operational Specifications Push-Pull Switch
Circuit	SPDT	DPST SPDT with customer installed wire jumper
Rating	125MA 28VDC	250MA 30VDC
Rotational Life	15,000 cycles of operation	15,000 cycles of operation

	Operational Specifications Resistive Modules Series S88	Operational Specifications Resistive Modules Series S89
MIL-R-94 Standard	Series S88 is designed to meet MIL-R-94 performance characteristics where applicable	Series 889 is designed to meet MIL-R-94 performance characteristics where applicable
Low Temperature Storage	Less than 2\% change in total resistance	Less than 2\% change in total resistance
Thermal Cycling	Less than 4% total R change as a result of 5 cycles @ $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	Less than 3\% total R change as a result of 5 cycles @ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Moisture Resistance	10% maximum total R change when tested per method 103 of MIL-STD-202	5\% maximum total R change when tested per method 103 of MIL-STD-202
Solderability	Meet the requirements of MIL-STD-202, Method 210, Condition A except immersed within .125 in. of element for 5 seconds.	Meet the requirements of MIL-STD-202, Method 210, Condition A except immersed within .125 in . of element for 5 seconds.
Shock	The total resistance setting change is 2% maximum between left and right terminals and 5% maximum between CCW terminal and center terminal when tested per method 213B condition I of MIL-STD-202. Applicable to single shaft potentiometers only.	The total resistance setting change is 2% maximum between left and right terminals and 5% maximum between CCW terminal and center terminal when tested per method 213 condition I of MIL-STD-202. Applicable to single shaft potentiometers only.
Vibration, High Frequency	No intermittent contacts or open circuits when tested per method 204D Condition C of MIL-STD-202. Resistance setting change is 5% maximum between left (CCW) terminal and center terminal. The total resistance change is 2% maximum between left and right terminals. Applicable to single shaft potentiometers only.	No intermittent contacts or open circuits when tested per method 204D Condition C of MIL-STD-202. Resistance setting change is 5\% maximum between left (CCW) terminal and center terminal. The total resistance change is 2% maximum between left and right terminals. Applicable to single shaft potentiometers only.
Washability	Units may be adversely affected if subjected to conventional after-solder board-wash	Units may be adversely affected if subjected to conventional after-solder board-wash
Salt Atmosphere	Visual inspection revealed no damage, defects, or other abnormalities after testing per MIL-STD-202 Method 101E-Condition A	Visual inspection revealed no damage, defects, or other abnormalities after testing per MIL-STD-202 Method 101E-Condition A
Humidity Steady State	10\% maximum total R change when tested per MIL-STD-202, Method 103B, Condition B, 96 Hours	5% maximum total R change when tested per MIL-STD-202, Method 103B, Condition B, 96 Hours

Body Size

Single module: . 5 in. square $\pm .047$ in. (except at standoffs)

Terminals

Printed circuit style on 0.100 in . grid in line, 0.250 in . long. Maximum PC terminal length: .875 in.
Terminal spacing in multiple section controls: 0.300 in.
Solder lugs formed from PC pins to accept 3 - \#22 AWG wires.

Housing

Molded thermoplastic

Anti-turn Device

Location 1 supplied unless otherwise specified.
See Chart D.
Anti-turn Device radius: 6,35mm.

Shafts

Single shaft: $1 / 8 \mathrm{in}$. or $1 / 4 \mathrm{in}$. dia. Nickel-plated brass. Outer Concentric Shaft: $1 / 8 \mathrm{in}$. dia. Stainless Steel. Inner Concentric Shaft: 0.078 in. dia. Nickel-plated brass.

Seals

Mounting seal and shaft seal for single shafts only. Caution: These seals are not designed to meet board washing requirements.

Bushing Diameter

1/4 in. x 32NEF-2A standard 3/8 in. x 32NEF-2A optional When using $3 / 8 \mathrm{in}$. diameter bushing, distance from mounting surface to PC terminals is .170 in . See page 8.

Bushing Length

Plain: $1 / 4$ in. , $3 / 8$ in. , or $1 / 2 \mathrm{in}$.
Split-locking style: $3 / 8 \mathrm{in}$.

Rotational Torque

Single and dual concentric controls: 0.2 to 3.0 oz.-in. Two Modules: 0.3 to 3.5 oz.-in. Three Modules: 0.5 to 4.5 oz.-in. Four Modules: 0.5 to 5.5 oz .-in. Medium Torque Option for single shaft only: 1 to 6 oz.-in. Torque Variation within a rotation: 1 oz .-in. max.

Stop Torque

Single Solid shaft: $3 \mathrm{lb} .-\mathrm{in}$. (standard)
High Stop Torque (Metal Stop) (Reccomended for military or high vibration applications) $3 \mathrm{lb} .-\mathrm{in} .1 / 8^{\prime \prime}$ shaft with O-ring
$8 \mathrm{lb} .-\mathrm{in} .1 / 4^{\prime \prime}$ or $1 / 8^{\prime \prime}$ shaft without O-Ring

Actuating Forces

Pot/PP Switch: 10-22 oz.; Dual Pot/PP Switch: 10-25 oz.;
Pot/MP Switch: 25-40 oz.; Pot/Pot/MP Switch: 25-43 oz.

Mechanical Rotation

With or without switch: $295^{\circ} \pm 5^{\circ}$.

Maximum Shaft Pull Force

.125 in. diameter shaft: 18 lbs . (20 lbs. Option) .250 in. diameter shaft: 10 lbs . (20 lbs. Option) Concentric Front \& Rear Shaft: 7.5 lbs . RS rotary and PP Push-Pull Switches: 10 lbs . (20 lbs. Option)
PP Push-Pull or Momentary Push Switches: 20 lbs.

Mounting Torque

Torque applied to the mounting nuts should not exceed 15 to 18 in.-Ibs. [1,7 to 2,0 N-m]. Tap Terminal Strength 18 lbs . maximum pull

Hardware

Mounting Hardware available as the following:
A. Hex mounting nut, Brass, Nickel Plated $1 / 4$ in. x 32 thread, $5 / 16$ in. across flats, $1 / 16$ in. thick.
B. Internal tooth lockwasher, Phosphorus Bronze, Nickle Plated, 13/32 in. OD x .025 in. thick.
C. Jam hex nut, Brass, Nickel Plated 5/16 in. across flats, 5/32 in. thick - supplied with locking type bushings.

Marking

Terminals are numbered for reference State Electronics part number.
Customer part number optional.

Shaft Radial Play (single shaft potentiometer)
.028 in. maximum 1 in. from mounting surface with
.250 in. diameter bushing

Shaft End Play

. 020 in. maximum

Construction

Riveted construction is standard.
Screw construction is available as an option.
Screws may be required depending on design.

Standard Tapers for Designs without RS

Modified Taper for Designs with RS
Honeywell / Clarostat Standard

" S " Taper is linear, the change in resistance value being directly proportional to the degree of rotation. It can be used either as right-hand or left-hand taper. This taper corresponds to Mil-R94 type "A"
"Z"Taper is measured between the wiper and the counter-clockwise terminals (pins1 \& 2) attains 10\% resistance value at 50\% of clockwise rotation (left-hand). This taper corresponds to Mil-R94 type "C"
"Reverse Z" Taper is measured between the wiper and the clockwise terminals (pins 2 \& 3) attains 10\% resistance value at 50\% of counterclockwise rotation (right-hand). This taper corresponds to Mil-R94 type "E"

Important - The modified tapers were used by Honeywell and Clarostat for all $388 / 389$ series designs that incorporated a RS. The modified taper is used for all legacy Honeywell or Clarostat designs that incorporated a RS.

For new designs, State can provide either the standard taper or the modified taper. Unless otherwise specified, the modified tapers will be supplied for all new designs that incorporate a RS.

Resistance tapers, curves or laws are terms used to describe the relationship between the mechanical rotation of the potentiometer shaft (wiper positions) and the resulting resistance change or output. To avoid confusion, the measurements must reference the terminals used and the direction of the shaft rotation.

While all manufacturers display the tapers as smooth curves, those curves actually consist of straight line segments which correspond to the number of conductive ink passes during the screening process. The more passes, the smoother the curve.

Mil-Spec Tapers

The $58 x$ series potentiometers utilize resistance tapers as defined in Mil-R94; i.e. Linear, Log and Reverse Log. The Mil-spec defines these tapers to correspond to resistance value at the mid-point of the mechanical rotation as follows:

Linear Taper (A) - 50\% of the nominal resistance at 50% of the mechanical rotation. Formerly "S" Taper.

Log Taper (C) - 10\% of the nominal resistance at 50% of the mechanical rotation. Shown as measured using terminals $1 \& 2$. Formerly "Z" taper.

Reverse Log Taper (E) - 90\% of the nominal resistance at 50% of the mechanical rotation. Shown as measured using terminals $2 \& 3$. Foremerly our "RZ" taper.

Log tapers are often referred to as Audio tapers with Reverse log as Reverse Audio.

Mechanical Rotational Angle (M.R.A.) is the total number of degrees between each rotational stop (295°). Electrical Rotational Angle (E.R.A.) is the total number of degrees over which the resistance changes ($\sim 265^{\circ}$).

The electrical track consists of a narrow pad ($\sim 15^{\circ}$) of high-conductive material at each end of the rotation and a center track of resistive material. While there is electrical continuity throughout the entire M.R.A., the resistance change occurs only within the resistive track. The angle representing the resistance track is referred to as the E.R.A.

When a switch is used in combination with a resistive element, the resistive track begins after the switch actuation angle. The logic is that if you are simultaneously using a RS and potentiometer, you would want to have the beginning of the resistance change after the switch is actuated. Also, and by design, the switch snaps into or out of detent and that can result in a spike in the resistance output.

The actuation angle for a typical RS is $\sim 15^{\circ}$ so when the resistive track begins after the switch actuation, the E.R.A. is reduced by $\sim 30^{\circ}$ to $\sim 240^{\circ}$ in total.

Unless otherwise specified, a potentiometer with a RS will utilize resistive modules that have the E.R.A. beginning after the switch is activated.

However, if you prefer to have a wider E.R.A., we can accommodate that choice as well.

There are hundreds of special curves available and there are no industry standards defining each variation.

The closest actual standard is defined in the Mil-R94 specification (see page 6).

Many companies use an "A B C" method for tapers where $A=$ Log, $B=$ Linear and $C=$ Reverse Log or; $A=$ Linear, $B=$ Log and $C=$ Reverse Log.

To make matters worse, the tapers may not have the same slope (Law) which results in a different resistance value at the mid-point of the rotation. When this is the case, there is typically a number after the taper designation indicating the percentage of the nominal resistance at the mid-point of the shaft rotation.
"W" Taper (A-20) attains 20\% resistance value at 50\% of clockwise rotation (left-hand).
"V"Taper (C-20) attains 20\% resistance value at 50\% of counterclockwise rotation (right-hand).
"T" Taper (A-30) attains 30\% resistance value at 50\% of clockwise rotation (left-hand).
"Reverse T" Taper (C-30) attains 30\% resistance value at 50\% of counterclockwise rotation (right-hand).
" \mathbf{M} " Taper is such that a " \mathbf{W} " taper is attained from either the 1 or 3 terminal to the center of the element.

Standard Resistance Values \& Tapers

	S88 Linear	$\begin{aligned} & \text { S88 } \\ & \text { Log } \end{aligned}$	S88 Reverse Log	$\begin{aligned} & \text { S89 } \\ & \text { Linear } \end{aligned}$	S89 Audio	S89 Reverse Log
50				-		
100	\bullet			\bullet	\bullet	\bullet
250	\bullet			\bullet	\bullet	\bullet
500	\bullet	-	\bullet	\bullet	\bullet	\bullet
1K	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2.5K	\bullet	\bullet	\bullet	-	\bullet	\bullet
5K	-	\bullet	\bullet	\bullet	\bullet	\bullet
10K	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
22K	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
25K	\bullet	-	\bullet	\bullet	\bullet	\bullet
50K	\bullet	-	\bullet	-	\bullet	-
100K	\bullet	-	\bullet	-	\bullet	\bullet
250K	\bullet	-	\bullet	-	-	\bullet
500K	\bullet	-	\bullet	-	\bullet	\bullet
1M	-	\bullet		\bullet	-	-
2.5M	\bullet			\bullet		
5 M	-			\bullet		
- Not Normally Stocked						

Disclaimer

Due to the unlimited design combinations, certain designs may not perform in accordance with all of the specifications.

Temperature Resistance Change

Nominal Resistance	Maximum Percent Temporary Resistance Change From $\mathbf{2 5}^{\circ}$						
	$-55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+105^{\circ} \mathrm{C}$	$+120^{\circ} \mathrm{C}$
$\mathbf{1 0 0}$ Ohms	± 5.0	± 4.0	± 1.5	0	± 1.5	± 2.0	± 3.5
10K Ohms	+7.0	+5.5	+2.0	0	± 1.5	± 2.5	± 5.5
100K Ohms	+8.0	+6.0	+2.5	0	± 2.0	± 3.5	± 6.0
1 Megohm	+10.0	+8.0	+3.0	0	± 2.5	± 4.0	± 7.5

Note: For non-linear tapers, multiply chart values by 1.25

Locating Tab Options

Series S88 Locating Lug Style:

Tab width: .091"
Tab Height: . $041 \pm .005^{\prime \prime}$ FMS
Spacing: .250"
Option Number
1 = one tab - at 9 o'clock (standard)
2 = one tab - at 3 o'clock
3 = one tab - at 12 o'clock
4 = one tab - at 6 o'clock
5 = two tabs - at 3 and 9 o'clock
$6=$ two tabs - at 6 and 12 o'clock
7 = No Locating Lug

NOTE: Slots are recommended for the locating tab(s) when using $3 / 8^{\prime \prime}$ diameter bushings because of clearance issues.

Potentiometer Schematic
Figure 3

Push-Pull Switch Module
Figure 5
Series PP/MP Switch: Push-Pull

> Series PP / MP- DPST Push-Pull or Push-Pull Momentary

> 125MA 28VDC

Series S88/S89 Bushings

Figure 6
.250 [6,35mm] Diameter Bushing, Plain Shaft

" A " Bushing Lengths for .250" Dia. Bushing: .250 [6.35mm] STD .375 [9.53mm] .500 [12.70mm]

Figure 7
.375 [9,53mm] Diameter Bushing, Plain Shaft

"A" Bushing Lengths for .375" Dia. Bushing: .250 [6.35mm] STD .375 [9.53mm] . 500 [12.70mm]

Figure 8
.250 [6,35mm] Diameter, Locking Bushing

Figure 9
.375 [9,53mm] Diameter, Locking Bushing

SERIES S88, S89

Series S88/S89 Shafts

Figure 10

.125 [3,18mm] Diameter - Slotted Shaft

Figure 12
.250 [6,35mm] Diameter - Flatted Shaft

Flat is Opposite Movable Contact
Flat can extend to within $.031[0,79]$ of mounting bushing where shaft length will not permit standard flat.

Figure 14
.125 [3,18mm] Diameter - Flatted Shaft

Flat is Opposite Movable Contact

Flat will extend to within . 031 [0,79] of mounting bushing where shaft length will not permit standard flat.

Figure 11
. 250 [6,35mm] Diameter - Slotted Shaft

Figure 13
.125 [3,18mm] Diameter - Concentric Shafts

Note: Only plain ends are available for concentric shafts

Figure 15
Trimmer

Dimension A: . 025 [0.64] Standard
Other lengths available to 50 [12,70] Maximum

Series S88 and S89 controls are assembled from 1/2" square, stackable potentiometer and switch modules. Combine up to 8 modules, with single or concentric metal shafts. Series S 88 potentiometer modules have conductive plastic resistive elements, and Series S 89 potentiometer modules have cermet resistive elements.

The most common configurations are listed below. Contact your State Electronics sales representative for your custom requirements.

Series S88/S89 - Single Shaft Horizontal Mounting Styles (without PC Support Plates)
 PC Pin Terminals (B22) .875" long, or Solder Hooks
 Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP = Momentary Push-DPST

Page
Drawing Comments - All configurations 17
Single Shaft, Potentiometer(s) and Rotary Switch(es)
PC Pins: 1, 2, 3, or 4 Potentiometer(s) or RS Modules, 1/4" Dia. Bushing. 18
PC Pins: 1, 2, 3, or 4 Potentiometer(s) or RS Modules, 3/8" Dia. Bushing 19
Solder Hooks: 1, 2, 3, or 4 Potentiometer(s) or RS Modules, 1/4" Dia. Bushing 20
Solder Hooks: 1, 2, 3, or 4 Potentiometer(s) or RS Modules, 3/8" Dia. Bushing 21
Single Shaft with Push-Pull or Momentary Push Switch (PP/MP) ${ }^{\text {(Note 1) }}$
PC Pins: Single PP Switch, $1 / 4^{\prime \prime}$ or 3/8" Dia. Bushing. 22
PC Pins: Single Potentiometer or RS plus PP or MP, $1 / 4$ " or $3 / 8$ " Dia. Bushing 23
PC Pins: 2 Potentiometer(s) or RS Modules plus PP or MP, $1 / 4$ " or $3 / 8$ " Dia. Bushing 24
PC Pins: 3 Potentiometer(s) or RS Modules plus PP/MP, $1 / 4$ " or $3 / 8^{\prime \prime}$ Dia. Bushing 25
Solder Hooks: Single PP or MP Switch, 1/4" Dia. or 3/8" Bushing 26
Solder Hooks: Single Potentiometer or RS plus PP or MP, 1/4" or 3/8" Dia. Bushing 26
Solder Hooks: 2 Potentiometer(s) or RS Modules plus PP or MP, 1/4" or 3/8" Dia. Bushing. 27
Solder Hooks: 3 Potentiometer(s) or RS Modules plus PP or MP, 1/4" or 3/8" Dia. Bushing. 27
Single Shaft Detents (Center, 11 or 21)
PC Pins or Solder Hooks: Single, Dual Potentiometer with Detent, Valley Style, 1/4" Dia. Bushing 28
PC Pins or Solder Hooks: Single, Dual Potentiometer with Detent, Valley Style, 3/8" Dia. Bushing 29
Single Shaft with Push-On / Push-Off Switch (Schadow ${ }^{\text {me }}$)
Single, Dual Potentiometer with DPDT Schadow Switch 30

Note 1: Push-Pull \& Momentary Push switches must be the last section

Series S88/S89 - Concentric Shafts Horizontal Mount Styles

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST

Page
Drawing Comments and Design criteria 31
Concentric Shafts, Potentiometer(s) and Rotary Switch(es)
PC Pins: 2, 3, 4 Potentiometers or RS Modules, Concentric Shafts, 1/4" Bushing 32
PC Pins: 2, 3, 4 Potentiometers or RS Modules, Concentric Shafts, 3/8" Bushing. 33
Solder Hooks: 2, 3, 4 Potentiometer or RS Modules, Concentric Shafts, 1/4" Bushing. 34
Solder Hooks: 2, 3, 4 Potentiometer or RS Modules, Concentric Shafts, 3/8" Bushing 35
Concentric Shafts, Potentiometer(s) and Rotary Switch(es) + Push-Pull (PP) or Momentary Push Switch (MP) ${ }^{\text {(Note 1) }}$
Solder Hooks: 1 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing 37
Solder Hooks: 1 Potentiometer or RS Modules, + PP or MP Switch, $3 / 8$ " Bushing 38
Solder Hooks: 2 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 39
Solder Hooks: 2 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 \& 2 40
Solder Hooks: 2 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 39
Solder Hooks: 2 Potentiometer or S Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 \& 2 40
Solder Hooks: 2 Potentiometer or RS Modules, + PP or MP Switch, 3/8" Bushing, Outer Shaft/ Module 1 41
Solder Hooks: 2 Potentiometer or RS Modules, + PP or MP Switch, 3/8" Bushing, Outer Shaft/ Module 1 \& 2 42
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 43
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1 \& 2 44
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MP Switch, 1/4" Bushing, Outer Shaft/ Module 1, 2 \& 3 45
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MP Switch, 3/8" Bushing, Outer Shaft/ Module 1 46
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MPSwitch, 3/8" Bushing, Outer Shaft/ Module 1 \& 2. 47
Solder Hooks: 3 Potentiometer or RS Modules, + PP or MP Switch, 3/8" Bushing, Outer Shaft/ Module 1, 2 \& 3 48
Concentric Shafts, Potentiometer(s) with Detents on Inner and/or Outer Shaft
PC Pins: 2 Potentiometers or RS Modules, with Detents, 1/4" Bushing 49
Solder Hooks: 2 Potentiometers or RS Modules, with Detents, 1/4" Bushing 50
Concentric Shafts, Potentiometer(s) and Rotary Switch(es) with Mounting Feet
PC Pins: 2 or 3 Potentiometer or RS Modules, Concentric Shaft, 1/4" Dia. Bushing 58
PC Pins: 4 Potentiometer or RS Modules, Concentric Shaft, 3/8" Dia. Bushing. 59
PC Pins: 2 or 3 Potentiometer or RS Modules, Concentric Shaft, 3/8" Dia. Bushing. 60
PC Pins: 4 Potentiometer or RS Modules, Concentric Shaft, 3/8" Dia. Bushing. 64
Concentric Shafts - Vertical Mount
C-9, C-10, C11:2 Potentiometer(s) or RS Modules, 1/4" Dia. Bushing 78
C-9, C-10, C11:2 Potentiometer(s) or RS Modules, 3/8" Dia. Bushing 79
C-9P, C-10P, C11P: 1 Potentiometer + PP or MP Switch, 1/4" Dia. Bushing 81

Series S88/S89 - Single Shaft Horizontal Mounting Styles
 With Mounting Plates - Styles B24-X

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; $M P=$ Momentary Push-DPST

Single Shaft - PC Pin Terminals, Rotary Switch(es) + Push-Pull (PP) or Momentary Push (MP) Switch ${ }^{\text {(Note 1) }}$

Page
1 PP or MP (no Potentiometer), $1 / 4$ " or $3 / 8^{\prime \prime}$ Bushing 52
1 or 2 Potentiometer or RS Modules, 1/4" Dia. Bushing 53
3 or 4 Potentiometer or RS Modules, 1/4" Dia. Bushing 54
1 Potentiometer or RS plus PP/MP, 1/4" or 3/8" Dia. Bushing 55
2 Potentiometer(s) or RS Modules plus PP/MP, 1/4" or 3/8" Dia. Bushing (Note 1) 56
3 Potentiometer(s) or RS Modules plus PP/MP, 1/4" or 3/8" Dia. Bushing (Note 1) 57
Single Shaft Detents (Center, 11 or 21), PC Pin Terminals
PC Pin Terminals, B-24: 1 or 2 Potentiometer with Detent, Valley Style, 1/4" Dia. Bushing 71
PC Pin Terminals, B-24: 1 or 2 Potentiometers with Detent, Valley Style, 3/8" Dia. Bushing 72
Single Shaft with Push-On / Push-Off Switch (Schadow ${ }^{\text {mim }}$)
Single, Dual Potentiometer with DPDT Schadow Switch 30

[^0]
Series S88/S89 - Vertical Mounting Styles

PC Pins Formed per Drawing
 (Limited to two sections due to lead lengths)

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST
Single Shaft
A-18, C-8, : 1 Potentiometer or RS, 1/4" Dia. Bushing 74
C-15: 1 PP or MP Switch, 1/4" Dia. Bushing. 74
A-18, C-8, : 1 Potentiometer or RS, 3/8" Dia. Bushing 75
C-15: 1 PP or MP Switch, 3/8" Dia. Bushing. 75
A-19, A-20, C9, C10: 2 Potentiometers or RS Modules, 1/4" Dia. Bushing 76
A-19, A-20, C9, C10: 2 Potentiometer or RS Modules, 3/8" Dia. Bushing 77
C-11: 1 Potentiometer and PP or MP Switch, 1/4" Dia. Bushing (Note 1) 78
C-11: 1 Potentiometer and PP or MP Switch, 3/8" Dia. Bushing (Note 1) 79
Detents (Center, 11 or 21)
C-8, A-18, C10, A20: 1, 2 Potentiometer(s), Detent, Valley Style, 1/4" Dia. Bushing 80
C-8, A-18, C10, A20: 1, 2 Potentiometer(s), Detent, Valley Style, 3/8" Dia. Bushing 81
Note 1: Push-Pull \& Momentary Push switches must be the last section
Screwed Together Construction - May be Required on Certain Designs
Designs using Screws instead of Rivets 83
Legacy Drawing Cross Reference 93

Motorized Potentiometers

Motorized Potentiometer (Wire Leads on Motor)

PC Pins: Single Shaft, 1 or 2 Potentiometer(s) or RS Modules, $1 / 4$ " or 3/8" Dia. Bushing. 86
Solder Hooks: Single Shaft 1 or 2 Potentiometer(s) or RS Modules, 1/4" or 3/8" Dia. Bushing 86

Drawing Comments

- All Mod-Pot resistive and switched modules are a nominal 0.500 [12,7mm] square.
- Resistive and rotary switch modules are 0.300 " $[7,62 \mathrm{~mm}$] deep.
- Push-pull switches are 0.310 " $[7,88 \mathrm{~mm}]$ deep.
- Push-pull or momentary push switches must be the last section in any design.
- Certain designs will require spacers of varying thicknesses between the modules.
- The mounting surface of the potentiometer is the flat portion of the base of the threads on the bushing that would rest against the inside surface of a panel.
- Shaft, bushing, overall depth, and other length dimensions are always referenced from the mounting surface (FMS).
- Options for leads are:

Full-length PC leads - 0.875" long
B22 0.250" [6,35mm] long
B24 cut to match mounting feet specification
Solder Hooks

- Lead spacing does not change with the type of termination.
- The lead spacing between resistive and rotary switch modules (designs without spacers) is 0.300 " [7.62mm], with 0.100 " [$2,54 \mathrm{~mm}$] on individual pins.
- Lead spacing on an individual push-pull switch is $.200^{\prime \prime} \times .200$ " $[5,08 \mathrm{~mm}] \times[5,08 \mathrm{~mm}]$.
- All designs require a front plate, with or without an anti-rotation tab. The single tab can be located at 90° increments and a dual tab at 180° increments.
- Front and rear plates that incorporate feet are also available on most designs. Those feet serve 2 purposes; to support the potentiometer and remove the stress for the leads in PC board applications and to consistently place the center line of the shaft above the surface of the PC board.
- All designs require a rear plate, with or without tabs. A rear plate with tabs is used on vertical mount designs to secure the potentiometer to the PC board and to remove any stress on the PC leads. Vertical mount designs are limited to two sections due to lead lengths.
- State Electronics can build virtually any configuration so, if you can't find a design, please contact our product manager for assistance.
- Most drawing number references will correspond to the chart below.

Drawing 111-1-B22: B-22 Single Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

PC Board Layout (top view)

Front View

Drawing 211-1-B22: B-22 Dual Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Front View

Drawing 311-1-B22: B-22 Triple Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 411-1-B22: B-22 Quad Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pin length standard is 0.250 ". Maximum of $.875^{\prime \prime}$ [22.22]
3. Drawings are not to scale.

Drawing 121-1-B22: B-22 Single Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 221-1-B22: B-22 Dual Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 321-1-B22: B-22 Triple Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 421-1-B22: B-22 Quad Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pin length standard is 0.250 ". Maximum of $.875^{\prime \prime}$ [22.22]
3. Drawings are not to scale.

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST
Drawing 111-1-SHA-1A: Single Potentiometer or RS, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 211-1-SHA: Dual Potentiometer or RS, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 311-1-SHA: Triple Potentiometer or RS, Solder Hooks, 1/4" Dia. Bushing

Drawing 411-1-SHA: Quad Potentiometer or RS, Solder Hooks, 1/4" Dia. Bushing

Front View

NOTE: Solder Hook Terminal receives (3) NO. 22 AWG . 025 [0,64mm] solid wires

Drawing 121-1-SHA: Single Potentiometer or RS, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 221-1-SHA: Dual Potentiometer or RS, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 321-1-SHA: Triple Potentiometer or RS, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 421-1-SHA: Quad Potentiometer or RS, Solder Hooks, 3/8" Dia. Bushing

NOTE: Solder Hook Terminal receives (3) NO. 22 AWG . 025 [0,64mm] solid wires

Drawing 111-2-B22:

B-22 Single PP or MP, PC Terminals, 1/4" Dia. Bushing

Front View

Drawing 121-2-B22:

B-22 Single PP or MP, PC Terminals, 3/8" Dia. Bushing

Front View

Drawing 211-2-B22:

B-22 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 221-2-B22:
B-22 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals, 3/8" Dia. Bushing

Front View

Bottom View

PC Board Layout
(Top View)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016$ [0,40], except as specified.
2. $\mathrm{B}-22 \mathrm{PC}$ pins length standard is 0.250 ". Maximum of $0.875^{\prime \prime}$ [22.22]
3. Drawings are not to scale.

Drawing 311-2-B22:

B-22 Dual Potentiometer or RS, plus Push-Pull/Momentary Switch, PC Pin Terminals, 1/4" Dia. Bushing

Front View

Series BJ Push-Pull Series BJM Momentary
Push-Pull/Momentary Schematic Shaft shown in the extended position Note: Connecting terminals 2 and 4
together will create a SPDT switch together will create a SPDT switch

PC Board Layout (Top View)

Drawing 321-2-B22:
B-22 Dual Potentiometer or RS, plus Push-Pull/Momentary Switch, PC Pin Terminals, 3/8" Dia. Bushing

Series BJ Push-Pull
Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position
Note: Connecting terminals 2 and 4 together will create a SPDT switch

Front View

Drawing 411-2-B22:

B-22, Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, PC Pin Terminals, 1/4" Dia. Bushing Locating Lug and no Support Brackets

Front View

Drawing 421-2-B22:

B-22 Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, PC Pin Terminals, 3/8" Dia. Bushing Locating Lug and no Support Brackets

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pins length standard is 0.250 ". Maximum of $0.875^{\prime \prime}[22.22]$
3. Drawings are not to scale.

Drawing 111-2-SHA: Single PP OR MP, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 121-2-SHA: Single PP OR MP, Solder Hooks, 3/8" Dia. Bushing

Front View

Series BJ Push-Pull Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position
Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 211-2-SHA:

Single Pot or RS, plus Push-Pull/Momentary Switch, Solder Hooks, 1/4" Dia. Bushing

Front View

Series BJ Push-Pull Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 221-2-SHA:
B-22 Single Pot or RS, plus Push-Pull/Momentary Switch, Solder Hooks, 3/8" Dia. Bushing

Front View
 Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 311-2-SHA:
B-22 Dual Pot or RS, plus Push-Pull/Momentary Switch, Solder Hook Terminals, 1/4" Dia. Bushing

Front View

Drawing 321-2-SHA:

B-22 Dual Pot or RS, plus Push-Pull/Momentary Switch, Solder Hook Terminals, 3/8" Dia. Bushing

Front View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 411-2-SHA:

Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, Solder Hooks, 1/4" Dia. Bushing

Drawing 421-2-SHA:

Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, Solder Hooks, 3/8" Dia. Bushing

Front View

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST

Drawing 111-1-B22-D:
B-22 Single Potentiometer with detent, Valley Style, PC Pin Terminals, 1/4" Dia. Bushing

Front View

Drawing 211-1-B22-D:
B-22 Dual Potentiometer with detent, Valley Style, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 111-1-SHA-D:
B-22 Single Potentiometer with detent, Valley Style, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 211-1-SHA-D:
B-22 Dual Potentiometer with detent, Valley Style, Solder Hooks, 1/4" Dia. Bushing

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST
Drawing 121-1-B22-D:
B-22 Single Potentiometer with detent, Valley Style, PC Pin Terminals, 3/8" Dia. Bushing

Front View

Drawing 221-1-B22-D:
B-22 Dual Potentiometer with detent, Valley Style, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 121-1-SHA-D:

B-22 Single Potentiometer with detent, Valley Style, Solder Hooks, 3/8" Dia. Bushing

Drawing 221-1-SHA-D:
B-22 Dual Potentiometer with detent, Valley Style, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 211-3-B22:
Single Rotentiometer with_ DPDT Schadow Switch: Momentary Push or Push On/Push Off

Drawing 311-3-B22:
Dual Potentiometer with DPDT Schadow Switch: Momentary Push or Push On/Push Off

Design Considerations for Concentric Shafts Potentiometers or Rotary Switches

- A concentric shaft potentiometer consists of an inner and outer shaft with a common axis.
- There are two shaft diameter combinations available:

5/64th" (.078") [1,98mm] Inner shaft with $1 / 8^{\prime \prime}$ (.125") [3,18mm] Outer shaft $1 / 8$ " (.125") [3,18mm] Inner shaft with a $1 / 4^{\prime \prime}\left(.250{ }^{\prime \prime}\right)[6,35 \mathrm{~mm}]$ Outer shaft

- All shafts lengths are measured FMS.
- As a general rule, the inner shaft should be at least $1 / 4^{\text {" }}$ longer than the outer shaft to allow for a knob.
- The outer shaft of a concentric potentiometer always controls the first module. Adjacent module can also be controlled by the outer shaft.
- The inner shaft would control all modules not controlled by the outer shaft.
- If a push-pull or momentary switch is incorporated into the design, it must be the last section and therefore controlled by the inner shaft.
- Designs shown in this catalog are limited to 4 sections. The number of combinations of modules type, their positions, terminations, and shaft combinations make it virtually impossible to show every configuration. State Electronics can build virtually any configuration so, if you can't find a design, please contact our product manager for assistance.

Drawing 212-1-B22:
B-22 Dual Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 321-1-B22:
B-22 Triple Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 421-1-B22:
B-22 Quad Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 1/4" Dia. Bushing

Front View

PC Board Layout
(top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pin length standard is 0.250 ". Maximum of $.875^{\prime \prime}[22.22]$
3. Drawings are not to scale.

Drawing 222-1-B22:

B-22 Dual Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 322-1-B22:
B-22 Triple Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 3/8" Dia. Bushing

Front View

Drawing 422-1-B22:
B-22 Quad Potentiometer or RS, Concentric Shaft, PC Pin Terminals, 3/8" Dia. Bushing

Front View

PC Board Layout (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 PC pin length standard is 0.250 ". Maximum of $.875^{\prime \prime}$ [22.22]
3. Drawings are not to scale.

Drawing 212-1-SHA:

Dual Potentiometer or RS, Concentric Shaft, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 312-1-SHA:

Triple Potentiometer or RS, Concentric Shaft, Solder Hooks, 1/4" Dia. Bushing

Front View

Drawing 412-1-SHA:

Quad Potentiometer or RS, Concentric Shaft, Solder Hooks, 1/4" Dia. Bushing

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 solder hook length standard is 0.250 ". Maximum of $0.800^{\prime \prime}$
3. Drawings are not to scale.

Drawing 222-1-SHA:

Dual Potentiometer or RS, Concentric Shaft, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 322-1-SHA:

Triple Potentiometer or RS, Concentric Shaft, Solder Hooks, 3/8" Dia. Bushing

Front View

Drawing 422-1-SHA:

Quad Potentiometer or RS, Concentric Shaft, Solder Hooks, 3/8" Dia. Bushing

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B-22 solder hook length standard is 0.250 ". Maximum of $0.800^{\prime \prime}$
3. Drawings are not to scale.

Concentric Shafts Potentiometers or Rotary Switches with Push-Pull or Momentary Push Switch

Drawing 212-2-SHA:

Concentric Shafts, Solder Hooks, 1 Potentiometer(s) or RS + PP, 1/4" Bushing

Series BJ Push-Pull Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 212-3-SHA:
Concentric Shafts, Solder Hooks, 1 Potentiometer(s) or RS + MP, 1/4" Bushing

Front View

Drawing 222-2-SHA:

Concentric Shafts, Solder Hooks, 1 Potentiometer(s) or RS + PP, 3/8" Bushing

Drawing 222-3-SHA:
Concentric Shafts, Solder Hooks, 1 Potentiometer(s) or RS + MP, 3/8" Bushing

Front View

Series BJ Push-Pull Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4
together will create a SPDT switch

Drawing 312-2-SHA12: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft Section 3 Push-Pull Switch on Inner Shaft

Drawing 312-3-SHA12: Concentric Shafts, B22, 2 Potentiometer(s) or RS + MP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Momentary Push Switch on Inner Shaft

Front View

Series BJ Push-Pull Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 312-2-SHA21: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Outer Shaft
Section 3 Push-Pull Switch on Inner Shaft

Drawing 312-3-SHA21: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Outer Shaft Section 3 Momentary Push Switch on Inner Shaft

Front View

Series BJ Push-Pull Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position
Note: Connecting terminals 2 and 4
together will create a SPDT switch

Drawing 322-2-SHA12: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft Section 3 Push-Pull Switch on Inner Shaft

Front View

Drawing 322-3-SHA12: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + MP, 3/8" Bushing Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft Section 3 Momentary PushSwitch on Inner Shaft

Drawing 322-2-SHA21: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Outer Shaft
Section 3 Push-Pull Switch on Inner Shaft

Drawing 322-3-SHA21: Concentric Shafts, Solder Hooks, 2 Potentiometer(s) or RS + MP, 3/8" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Outer Shaft Section 3 Momentary Push Switch on Inner Shaft

Front View

Drawing 412-2-SHA13: Concentric Shafts, Solder Hook, 3 Potentiometer(s) or RS + PP, 1/4" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Push-Pull Switch on Inner Shaft

Front View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4
together will create a SPDT switch

Drawing 412-3-SHA13: Concentric Shafts, Solder Hook, 3 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Drawing 412-2-SHA22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position
Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 412-3-SHA-22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + MP, 1/4" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft
Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Series BJ Push-Pull Series BJM Momentary Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 412-2-SHA31: Concentric Shafts, B22, 3 Potentiometer(s) or RS + PP, 1/4" Bushing Section $1,2 \& 3$ Potentiometers or RS on Outer Shaft Section 4 Push-Pull Switch on Inner Shaft

Front View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 412-3-SHA-31: Concentric Shafts, B22, 3 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1, 2 \& 3 Potentiometers or RS on Outer Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

SERIES S88, S89
Series S88/S89 - Horizontal Mounting Styles (continued)

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; $M P=$ Momentary Push-DPST
Drawing 422-2-SHA13: Concentric Shafts, Solder Hook, 3 Potentiometer(s) or RS + PP, 3/8" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Push-Pull Switch on Inner Shaft

Drawing 422-3-SHA13: Concentric Shafts, Solder Hook, 3 Potentiometer(s) or RS + MP, 3/8" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Drawing 422-2-SHA22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Drawing 422-3-SHA-22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + MP, 3/8" Bushing Section 1 \& 2 Potentiometer or RS on Outer Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Drawing 422-2-SHA31: Concentric Shafts, B22, 3 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1, 2 \& 3 Potentiometers or RS on Outer Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Drawing 422-3-SHA-31: Concentric Shafts, B22, 3 Potentiometer(s) or RS + MP, 3/8" Bushing Section 1, 2 \& 3 Potentiometers or RS on Outer Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Series BJ Push-Pull
Series BJM Momentary
Push-Pull/Momentary Schematic
Shaft shown in the extended position Note: Connecting terminals 2 and 4 together will create a SPDT switch

Drawing 212-1-B22DO:

B22, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Outer Shaft, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 212-1-B22DI:

B22, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Inner Shaft, 1/4" Dia. Bushing

Front View

Drawing 212-1-B22DOI:
B22, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Both Shafts, 1/4" Dia. Bushing

Front View

Drawing 212-1-ADO:
Solder Hooks, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Outer Shaft, 1/4" Dia. Bushing

Front View

Drawing 212-1-ADI:

Solder Hooks, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Inner Shaft, 1/4" Dia. Bushing

Front View

Drawing 212-1-ADOI:

Solder Hooks, Concentric Shafts, 2 Potentiometer(s) or RS's with Detents on Both Shafts, 1/4" Dia. Bushing

Front View

HORIZONTAL MOUNTING WITH SUPPORT PLATES

Mounting feet are available on most designs and provide:

- Support for the front and rear of the potentiometer thereby removing the stress from the PC leads
- Consistent distance from the surface of the PC board and the center line of the shaft
- A grounding path from the board to the bushing of the potentiometer.

Support Plate Dimensions:				
Type	"A" S	upport Plate	"C"	erminal Length
B-24-1	. 375	[9.53]	. 250	[6.35] STANDARD
B-24-2	. 500	[12.70]	. 375	[9.53]
B-24-3	. 625	[15.88]	. 500	[12.70]
B-24-4	. 750	[19.05]	. 625	[15.88]
B-24-5	. 275	[6.98]	. 125	[3.18]

Front View

Drawing 111-2-B24:
B-24 Single Push-Pull or Momentary Switch, Support Plates, 1/4" Dia. Bushing

Front View

Rear View

Support Plate Dimensions:				
Type	Support Plate		Terminal Length	
B-24-1	. 375	[9.53]	. 250	[6.35]
B-24-2	. 500	[12.70]	. 375	[9.53]
B-24-3	. 625	[15.88]	. 500	[12.70]
B-24-4	. 750	[19.05]	. 625	[15.88]
B-24-5	. 275	[6.98]	. 125	[3.18]

Drawing 121-2-B24:
B-24, Single Push-Pull or Momentary Switch, Support Plates, 3/8" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; MP $=$ Momentary Push-DPST

Drawing 111-1-B24:
B-24 Single Potentiometer or RS, Support Plates, 1/4" Dia. Bushing

Rear View

Front View

Drawing 211-1-B24:
B-24 Dual Potentiometer or RS, Support Plates, 1/4" Dia. Bushing

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 311-1-B24:
B-24 Triple Potentiometer or RS, Support Plates, 1/4" Dia. Bushing

Front View

PC Board Layout (top view)

Drawing 411-1-B24:
B-24 Quad Potentiometer or RS, Support Plates, 1/4" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; $M P=$ Momentary Push-DPST

Drawing 211-2-B24:
B-22 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals, Support Plate, 1/4" Dia. Bushing

Bottom View

Front View

Rear View

Drawing 221-2-B24:
B-24 Single Module, plus Push-Pull/Momentary Switch, PC Pin Terminals, Support Plate, 3/8" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

| Support Plate Dimensions:
 Type | "A" | |
| :--- | :---: | :--- | :--- | :--- |

Terminal Length
. 250 [6.35]
.250 [6.35] $.500 \quad[12.70]$.125 [3.18]

Bottom View

Front View

Drawing 311-2-B24: B-24 Dual Potentiometer or RS, plus Push-Pull/Momentary Switch, PC Pin Terminals with Support Plates, 1/4" Dia. Bushing

Drawing 321-2-B24: B-24 Dual Potentiometer or RS, plus Push-Pull/Momentary Switch, PC Pin Terminals with Support Plates, 3/8" Dia. Bushing

Support Plate Type	Dimensions: "A"	"C"	

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 411-2-B24: B-24, Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, PC Pin Terminals with Support Plates, 1/4" Dia. Bushing
Support Brackets and no Locating Lug

Front View

Rear View

Drawing 421-2-B24: B-24, Triple Potentiometer/RS with (PP) Push-Pull/(MP) Momentary Switch, PC Pin Terminals with Support Plates, 3/8" Dia. Bushing
Support Brackets and no Locating Lug

Front View

Support Plate Dimensions:				
Type	Support Plate		Terminal Length	
B-24-1	. 375	[9.53]	. 250	[6.35]
B-24-2	. 500	[12.70]	. 375	[9.53]
B-24-3	. 625	[15.88]	. 500	[12.70]
B-24-4	. 750	[19.05]	. 625	[15.88]
B-24-5	. 275	[6.98]	. 125	[3.18]

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Rear View

Drawing 212-1-B24:
B-24 Dual Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 1/4" Dia. Bushing

Drawing 312-1-B24:
B-24 Triple Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 1/4" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 412-1-B24:
B-24 Quad Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 1/4" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Switch Abbreviations: $R S=$ Rotary-SPDT; $P P=$ Push-Pull-DPST; $M P=$ Momentary Push-DPST
Drawing 222-1-B24:
B-24 Dual Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 3/8" Dia. Bushing

Front View

Rear View

Support Plate Dimensions:

| Support
 Type | "A" | "C" | |
| :--- | :---: | :--- | :--- | :--- |

PC Board Layout
(top view)

Drawing 322-1-B24:
B-24 Triple Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 3/8" Dia. Bushing

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 312-2-B24-12: Concentric Shafts, B24, 2 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft Section 3 Push-Pull Switch on Inner Shaft

Terminal Length
. 250 [6.35]
$\begin{array}{ll}.250 & \text { [6.35] } \\ .375 & {[9.53]}\end{array}$
$\begin{array}{ll}.375 & {[9.53]} \\ .500 & {[12.70]}\end{array}$
$\begin{array}{ll}.625 & {[15.88]} \\ .125 & {[3.18]}\end{array}$

Front View

Drawing 312-3-B24-12: Concentric Shafts, B24, 2 Potentiometer(s) or RS + MP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Push-Pull Switch on Inner Shaft

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 312-2-B24-21: Concentric Shafts, B24, 2 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Outer Shaft
Section 3 Push-Pull Switch on Inner Shaft

Front View

Drawing 312-3-B24-21: Concentric Shafts, B22, 2 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Outer Shaft
Section 3 Momentary Push Switch on Inner Shaft

| Type
 Type | "A" | "C" | |
| :--- | :---: | :--- | :--- | :--- |

Front View

Support Plate Dimensions:

Rear View

PC Board Layout
(top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 322-2-B24-12: Concentric Shafts, B24, 2 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Push-Pull Switch on Inner Shaft

Front View

Drawing 322-3-B24-12: Concentric Shafts, B24, 2 Potentiometer(s) or RS + MP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Momentary Push Switch on Inner Shaft

Support Plate Dimensions:
Type Type \quad "A" Support Plat $\begin{array}{lll}\text { B-24-2 } & .500 & {[12.70]} \\ \text { B-24-3 } & 625 & {[15.88]}\end{array}$ $\begin{array}{lll}\text { B-24-3 } & .625 & {[15.88]} \\ \text { B-24-4 } & .750 & {[19.05]}\end{array}$ $\begin{array}{lll}\text { B-24-4 } & .750 & {[19.05]} \\ \text { B-24-5 } & .275 & {[6.98]}\end{array}$
PC Board B-24

"C"	
Terminal Length	
.250	$[6.35]$
.375	$[9.53]$
.500	$[12.70]$
.625	$[15.88]$
.125	$[3.18]$

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 422-1-B24-13:

B-24 Quad Potentiometer or RS, Concentric Shaft, PC Pin Terminals, Support Plates, 3/8" Dia. Bushing

Front View

Rear View

PC Board Layout (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B 24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 412-2-B24-13: Concentric Shafts, B24, 3 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Potentiometer or RS on Inner Shaft
Section 4 Push-Pull Switch on Inner Shaft

Front View

PC Board Layout
(top view)

Drawing 412-3-B24-13: Concentric Shafts, B24, 3 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1 Potentiometer or RS on Outer Shaft Section 2 Potentiometer or RS on Inner Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Notes:

Front View

PC Board Layout
(top view)

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 412-2-B24-22: Concentric Shafts, B24, 3 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft
Section 3 Potentiometer or RS on Inner Shaft
Section 4 Momentary Push Switch on Inner Shaft

Front View

Drawing 412-3-B24-22: Concentric Shafts, B24, 3 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1 \& 2 Potentiometer or RS on Outer Shaft Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016$ [0,40], except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 412-2-B24-31: Concentric Shafts, B24, 3 Potentiometer(s) or RS + PP, 1/4" Bushing
Section 1, 2 \& 3 Potentiometers or RS on Outer Shaft Section 4 Push-Pull Switch on Inner Shaft

Drawing 412-3-B24-31: Concentric Shafts, B24, 3 Potentiometer(s) or RS + MP, 1/4" Bushing Section 1, 2 \& 3 Potentiometers or RS on Outer Shaft Section 4 Momentary Push Switch on Inner Shaft

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 422-2-B24-13: Concentric Shafts, B24, 3 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Potentiometer or RS on Inner Shaft
Section 4 Push-Pull Switch on Inner Shaft

Rear View

Front View

PC Board Layout
(top view)

Drawing 422-3-B24-13: Concentric Shafts, B24, 3 Potentiometer(s) or RS + MP, 3/8" Bushing
Section 1 Potentiometer or RS on Outer Shaft
Section 2 Potentiometer or RS on Inner Shaft
Section 3 Potentiometer or RS on Inner Shaft Section 4 Momentary Push Switch on Inner Shaft

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 422-2-B24-22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + PP, 3/8" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft
Section 3 Potentiometer or RS on Inner Shaft
Section 4 Momentary Push Switch on Inner Shaft

Front View

Drawing 422-3-B24-22: Concentric Shafts, B22, 3 Potentiometer(s) or RS + MP, 3/8" Bushing
Section 1 \& 2 Potentiometer or RS on Outer Shaft
Section 3 Potentiometer or RS on Inner Shaft
Section 4 Momentary Push Switch on Inner Shaft

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 422-2-B24-31: Concentric Shafts, B24, 3 Potentiometer(s) or RS + PP, 3/8" Bushing Section 1, 2 \& 3: 2 Potentiometers or RS on Outer Shaft Section 4: Momentary Push Switch on Inner Shaft

"C"
Terminal Length
. 250 [6.35]
. 375 [9.53]
$\begin{array}{ll}.375 & {[9.53]} \\ .500 & {[12.70]}\end{array}$
$\begin{array}{ll}.625 & {[15.88]} \\ .125 & {[3.18]}\end{array}$

Drawing 422-3-B24-31: Concentric Shafts, B24, 3 Potentiometer(s) or RS + MP, 3/8" Bushing Sections 1, 2 \& 3: 2 Potentiometers or RS on Outer Shaft Section 4: Momentary Push Switch on Inner Shaft

Front View

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters. Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. B24 PC pin length per chart. .875" [22.22] Max.
3. Drawings are not to scale.

Drawing 111-1-B24-D:
B-24 Single Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates, 1/4" Dia. Bushing

Front View

Drawing 211-1-B24-D:
B-24 Dual Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates, 1/4" Dia. Bushing

Drawing 121-1-B24-D:
B-24 Single Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates, 3/8" Dia. Bushing

Front View

Drawing 221-1-B24-D:
B-24 Dual Potentiometer with detent, Valley Style, PC Pin Terminals, Support Plates, 3/8" Dia. Bushing

Front View

Rear View

VERTICAL MOUNTING

Vertical mounted pots are typically attached to a PC board at a 90° angle. The leads can be formed towards the rear of the potentiometer for C-XX mounting style or towards the front of the potentiometer for $\mathrm{A}-\mathrm{XX}$ mounting.

The rear plate used on a vertical mounted potentiometer has two tabs that are used to provide support, thereby removing the stress from the PC leads.

Vertical A-xx

Drawing 111-1-C8: C-8 Single Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Tab Length:
TabLength:
$0.039 \pm .005[0.099]$

Drawing 111-1-A18: A-18 Single Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Vertical C-XX

Vertical A-xx

PC Board Layout (top view) Type C-8

Drawing 111-2-C15: C-15 Single PP Push-Pull / MP Momentary Switch, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 121-1-B8: C-8 Single Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

PC Board Layout (top view) Type C-8

Drawing 121-1-A18: A-18 Single Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

PC Board Layout (top view) Type A-18

Drawing 121-2-C15: C-15 Single PPS Push-Pull / PPSM Momentary Switch, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 211-1-A20: A-20 Dual Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

PC BOARD LAYOUT (top view) Type A-20

Drawing 211-1-C9: C-9 Dual Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

PC BOARD LAYOUT (top view)
Type C-9

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. Drawings are not to scale.

Drawing 211-1-A19: A-19 Dual Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 211-1-C10: C-10 Dual Potentiometer or RS, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 221-1-A20: A-20 Dual Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 221-1-C9 2: C-9 Dual Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

PC BOARD LAYOUT (top view)

Notes:

1. Basic dimensions are in inches.

Dimensions in brackets are in millimeters.
Dimensional Tolerance $\pm .016[0,40]$, except as specified.
2. Drawings are not to scale.

- \quad -

Drawing 221-1-A19: A-19 Dual Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 221-1-C10: C-10 Dual Potentiometer or RS, PC Pin Terminals, 3/8" Dia. Bushing

PC BOARD LAYOUT (top view)
Type C-10

SERIES S88, S89
Series S88/S89 - Vertical Mounting Styles (continued)

Drawing 212-1-C9: C-9 Dual Potentiometer, Concentric Shaft, PC Pin Terminals, 1/4" Dia. Bushing

PC BOARD LAYOUT (top view)
Type C-9

Drawing 212-2-C11: C-11 Single Potentiometer and PP/MP Switch, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 212-1C10: C-10 Dual Potentiometer Concentric Shaft, PC Pin Terminals, 1/4" Dia. Bushing

DIMENSION NOTES
$A=$ Shaft Length (Out Position)
$A=$ Shaft Length (Out
$B=$ Bushing Length
$=$ Bushing Length
$.250[6.35 \mathrm{~mm}]$ STD
.375 [9.53 mm]
.500 [12.70mm]

Drawing 222-1-C9: C-9 Dual Potentiometer, Concentric Shaft, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 222-1-C10: C-10 Dual Potentiometer, Concentric Shaft, PC Pin Terminals, 3/8" Dia. Bushing

PC BOARD LAYOUT (top view)
Type C-10

Drawing 222-2-C11: C-11 Single Potentiometer and PP/MP
Momentary Switch, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 111-1-C8-D: C-8 Single Potentiometer with Detent, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 111-1-A18-D: A-18 Single Potentiometer with Detent, PC Pin Terminals, 1/4" Dia. Bushing

PC Board Layout (top view)
Type C-8

DIMENSION NOTES
$B=$ Bushing Length
.250 [6.35 mm$]$ STD
$.375[9.53 \mathrm{~mm}]$
. 500 [12.70mm]

PC Board Layout (top view) Type A-18

Drawing 211-1-C10-D: C-10 Dual Potentiometer with Detent, PC Pin Terminals, 1/4" Dia. Bushing

Drawing 211-1-A20-D: A-20 Dual Potentiometer with Detent, PC Pin Terminals, 1/4" Dia. Bushing

PC Board Layout (top view)
Type A-20

Drawing 121-1-C8-D: C-8 Single Potentiometer with Detent, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 121-1-A18-D: A-18 Single Potentiometer with Detent, PC Pin Terminals, 3/8" Dia. Bushing

PC Board Layout (top view) Type A-18

Drawing 221-1-C10-D: C-10 Dual Potentiometer with Detent, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 221-1-A20-D: A-20 Dual Potentiometer with Detent, PC Pin Terminals, 3/8" Dia. Bushing

Drawing 212-2-C9: Concentric Shafts, C9
1 Potentiometer + PP Switch, 1/4" Dia. Bushing

PC BOARD LAYOUT (top view) Type C-9

Drawing 212-2-C11: Concentric Shafts, C11 1 Potentiomenter + PP Switch, 1/4" Dia. Bushing

DIMENSION NOTES
$\mathrm{A}=$ Shaft Length (Out Position)
$B=$ Bushing Length
.250 [6.35mm] STD
.375 [9.53 mm]
.500 [12.70mm]

Drawing 212-2-C10: Concentric Shafts, C10 1 Potentiomenter + PP Switch, 1/" Dia. Bushing

PC BOARD LAYOUT (top view) Type C-10

Most designs utilize a riveted construction. However, certain combinations of component parts cannot use rivets and when that is the case, screws are used. There are also applications where screws are used when a customer wants to fine tune the phasing (angle) between multiple resistor sections.

Screws are inserted through the front mounting plate and do not affect the mounting surface or alter any clearances at that surface. The nuts or retaining bars used on the back plate will alter the overall length of the assembly, which is typically not an issue unless it is a vertical mount design.

Loc-Tite is used in all designs that incorporate screws. The only exception would be based on a customer's request in order to allow them to alter the phase of each section.

Drawing 50-1: Rear Detail for Screwed-together Construction

MOTORIZED POTENTIOMETER

A motorized potentiometer provides the ability to control a potentiometer from a remote location, or a quick way to bring a potentiometer or a series of potentiometers back to a predetermined position. They are typically found in professional sound mixing equipment to return multiple faders back to a "home" position.

Any single shaft potentiometer can be motorized. The rotational speed of the motor is determined by the voltage applied and/or the gear ratio selected.

MOTORIZED POTENTIOMETERS

The series S8XMP Motorized Potentiometer is an assembly utilizing any single shaft S 8 x potentiometer (as many as four ganged units) and a geared motor, coupled by a slip clutch for limited mechanical rotation and manual adjustment of the potentiometer.

Features

- Small size
- Remote operation
- Slip clutch for manual operation
- Memory reset applications
- 1/2" square potentiometer
- Gear Motor: 0.63" Diameter

To Request a Quotation:

Step 1: Using our online Request a Quote option, create a detailed specification for the S8X potentiometer.
Step 2: Choose the appropriate gear ratio for the motor.
Step 3: Choose the operating voltage (6 or 12 VDC).

Sixile

RoHS compliant

TYPICAL PART NUMBER DESIGNATION

LIST OF PART NUMBER \& SPECIFICATIONS

Gear Ratio	Rated Voltage	Part Number	Torque (mNm)			Speed (nini) (Reference) RPM		Current (mA)			Length (mm)		Weight (g) (Reference)
			Rated	Max.	Starting	No-Load	Rated	No-Load	Rated	Starting	Motor	Gear	
1/30	DC6 V	M030-6V	20	30	>50	477	380	< 160	<400	< 1600	35	14	25
	DC12V	M030-12V						< 80	< 250	<800			
1/60	DC6 V	M060-6V	40	60	>100	213	160	< 160	<400	< 1600	38	17	30
	DC12 V	M060-12V						<80	< 250	< 800			
1/120	DC6 V	M120-6V	60	90	>170	127	100	< 160	< 400	< 1600			
	DC12 V	M120-12V						< 80	< 250	< 800			
	DC6 V	M240-6V	120	180	> 350	53	40	< 160	<400	< 1600	41	20	35
	DC12 V	M240-12V						< 80	< 250	< 800			
1/300	DC6 V	M300-5V	160	240	>400	45	34	< 160	< 400	< 1600			
	DC12 V	M $300-12 \mathrm{~V}$						< 80	< 250	< 800			

ETATE S8X MOTORS

■ PERFORMANCE CURVES

- 060-6

- 120-6

- 300-6

-060-12

- 300-12V

■ OUTLINE DIMENSIONS

Mark A

Gear ratio	$1 / 30$	$1 / 60$	$1 / 120$	$1 / 240$	$1 / 300$	
A	14	17			20	

MOD-POT ${ }^{\ominus}$
Series S88/S89
Request For Quotation
Single Page Form

1/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt Cermet - 1 Watt

36 ROUTE 10 EAST HANOVER, N.J. 07936 TEL. 973-887-2550 Toll Free 800-631-8083

Request Quotation Online at Potentiometers.com
Customer Name \qquad Address

City, State, Zip, Country Customer Part Number/When Specified

SEE DATA SHEETS FOR ASSEMBLED DIMENSIONS \& DETAILED DESCRIPTION OF THE FOLLOWING OPTIONS:

NOTE: SELECT THE DIMENSIONS WHICH ARE REQUIRED AND FILL IN ALL APPROPRIATE BOXES

Date: \qquad Requested By: \qquad Title: \qquad Phone:

DISCLAIMER: Due to the unlimited design combinations, certain designs may not perform in accordance with all of the published specifications. There may also be combinations available that cannot be specified using this form. Contact Sales if there are any questions.
Fax or scan and email completed form to: STATE ELECTRONICS, 36 Route 10, East Hanover, NJ 07936 • FAX 973-887-1940 • email: aturner@state-elec.com
For assistance, contact Clarosystem Product Manager Toll-free: 800-631-8083

MOD-POT ${ }^{\oplus}$

Series S88/S89

 Request For Quotation Page 1 of 31/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt Cermet-1 Watt

36 ROUTE 10 EAST HANOVER, N.J. 07936 TEL. 973-887-2550 Toll Free 800-631-8083

Request Quotation Online at Potentiometers.com

Series S88/S89 Custom Ordering Information - Follow Steps to Describe Control

Resistance Element (choose one) \square Series S88 Conductive Plastic

2 Terminals OR Support Plates (choose one)
\square Terminals (choose style)
\square Solder Hook
\square PC Pin Style B22 (specify length)
$.250 \mathrm{in} .(6.35 \mathrm{~mm})$ $.350 \mathrm{in} .(8.89 \mathrm{~mm})$ $\square .750 \mathrm{in} .(19.05 \mathrm{~mm})$ $.500 \mathrm{in} .(12.7 \mathrm{~mm})$.625 in . (15.875 mm)
$\square .875$ in. (22.225mm) Standard
\square PC Pin Style special configuration (specify)

Optional Support Plates (choose one type)

Type	"A"Support Plate		"C"Terminal	
in.	(mm)	in.	(mm)	
$\square \mathrm{B}-24-1$.375	(9.53)	.250	(6.35)
$\square \mathrm{B}-24-2$.500	(12.53)	.375	(9.35)
$\square \mathrm{B}-24-3$.625	(15.88)	.500	(12.70)
\square B-24-4	.750	(19.05)	.625	(15.88)
\square B-24-5	.275	(6.98)	.125	(3.18)
* B-24-6	.2969	(7.54)	.175	(4.45)
* B-24-7	.4375	(11.11)	.315	(8.00)
* B-24-8	.5625	(14.28)	.425	(10.8)

* (Discontinued - For Reference Only)

MOD-POT ${ }^{\ominus}$
Series S88/S89 Request For Quotation Page 2 of 3

1/2" Square Modular Potentiometer
Conductive Plastic - 1/2 Watt Cermet - 1 Watt

MOD-POT ${ }^{\oplus}$

Series 588/S89
Request For Quotation Page 3 of 3

1/2" Square Modular Potentiometer
Conductive Plastic - $1 / 2$ Watt
Cermet-1 Watt

7
Special Options (Specify if required)8 lb . Stop Torque (If an internal shaft seal is selected, reduce to 5 lb . Stop Torque)

8 Bushing (Choose length and diameter)

Length (Dim "B")	\square Plain $.250 \mathrm{in} .(6.35 \mathrm{~mm})$	Diameter	\square Plain $.250 \mathrm{in} .(6.35 \mathrm{~mm})$
	\square Plain $.375 \mathrm{in} .(9.53 \mathrm{~mm})$		\square Plain $.375 \mathrm{in} .(9.53 \mathrm{~mm})$
	\square Plain $.500 \mathrm{in}(12.70 \mathrm{~mm})$		
	\square Locking $.375 \mathrm{in}(9.53 \mathrm{~mm})$		
	\square Locking .500 in $(9.53 \mathrm{~mm})$		

9 Single Shafts
Diameter (Choose one) $\square .125 \mathrm{in} .(3.18 \mathrm{~mm})$ (with .250 in (6.35 mm) Dia. bushing) $\square .250$ in. (6.35 mm) (with $.375 \mathrm{in} .(9.53 \mathrm{~mm})$ Dia. bushing)

Length (Dim "A") from mounting surface (FMS) (specify) \qquad

Concentric Shafts (available for Up to 4 modules. Module closest to Panel is controlled by outer shaft.)

10 Shaft Ending (Select one) \square Plain \square Flatted (specify length \& thickness)

11
Locating Lug Options (Select one)
$\square 1=$ one tab - at 9 o'clock (standard) $\square 2$ = one tab - at 3 o'clock $\square 3$ = one tab - at 12 o'clock $\square 4$ = one tab - at 6 o'clock $\square 5$ = two tabs - at 3 and 9 o'clock $\square 6=$ two tabs - at 6 and 12 o'clock $\square 7=$ No Locating Lug

12
Mounting Hardware (Specify)
\square Standard
\square IP66 Hardware
\square NoneOther
\qquad

DISCLAIMER: Due to the unlimited design combinations, certain designs may not perform in accordance with all of the specifications

LEGACY DRAWING CROSS REFERENCE

Current Drawing References to Legacy Drawing References (Prior to 2023)

Before 2023	Current
11-1	111-1-B22
11-2	311-1-B22
11-3	411-1-B22
11-4	211-1-B22
12-1	111-1-B24
12-2	211-1-B24
12-3	311-1-B24
12-4	411-1-B24
11-1B	121-1-B22
11-2B	221-1-B22
11-3B	321-1-B22
11-4B	421-1-B22
13-1	111-1-SHA
13-1B	121-1-SHA
13-2B	221-1-SHA
13-3	311-1-SHA
13-3	211-1-SHA
13-3B	321-1-SHA
13-4	411-1-SHA
13-4B	421-1-SHA
14-1	111-1-B24-D
14-2	211-1-B24-D
14-3	111-1-B22-D
14-3A	121-1-B22-D
14-4	211-1-B22-D
14-4A	221-1-B22-D
14-5	111-1-SHA-D
14-6	211-1-SHA-D
15-1	211-2-B22
15-1A	221-2-B22
15-2	211-2-B24

Before 2023	Current
15-3	211-2-SHA
15-3	411-2-B22
15-3A	221-2-B24
15-3A	221-2-SHA
15-3B	411-2-B24
15-3D	421-2-B24
15-4	311-2-B22
15-5	311-2-B24
15-6	311-2-SHA
15-7	321-2-B22
15-8	321-2-B24
15-9	321-2-SHA
16-1A	212-1-B22
16-2A	312-1-B22
16-3A	212-1-B24
16-3A	121-1-SHA-D
16-3B	222-1-B24
16-4	411-2-SHA
16-4A	312-1-B24
16-4A	221-1-SHA-D
16-4B	322-1-B24
16-4C	421-2-SHA
16C-1A	222-1-B22
16C-2A	322-1-B22
17-1	121-1-B24-D
17-1A	212-1-SHA
17-1A	312-1-SHA
17-1B	222-1-SHA
17-2	221-1-B24-D
17-2C	322-1-SHA
18-1	211-3-B22

Before 2023	Current
$18-2$	$311-3-\mathrm{B} 22$
$19-1$	$111-1-\mathrm{C} 8$
$19-1 \mathrm{~A}$	$121-1-\mathrm{C}-\mathrm{D}$
$19-2$	$121-1-\mathrm{A} 18$
$20-1$	$111-2-\mathrm{C} 15$
$20-1 \mathrm{~A}$	$121-2-\mathrm{C} 15$
$20-2$	$211-1-\mathrm{A} 19$
$20-2 \mathrm{~A}$	$221-1-\mathrm{A} 19$
$20-3$	$211-1-\mathrm{A} 20$
$20-3 \mathrm{~A}$	$221-1-\mathrm{A} 20$
$21-3$	$211-\mathrm{C} 9$
$21-3 \mathrm{~A}$	$221-1-\mathrm{C} 9$
$21-4$	$211-1-\mathrm{C} 10$
$21-4$	$212-1-\mathrm{C} 10$
$21-4 \mathrm{~A}$	$221-1-\mathrm{C} 10$
$22-1$	$212-2-\mathrm{C} 9$
$22-1 \mathrm{~A}$	$222-1-\mathrm{C} 9$
$22-2$	$212-2-\mathrm{C} 10$
$22-2 \mathrm{~A}$	$222-1-\mathrm{C} 10$
$22-3$	$212-2-\mathrm{C} 11$
$22-3 \mathrm{~A}$	$222-2-\mathrm{C} 11$
$23-1$	$111-1-\mathrm{C} 8-\mathrm{D}$
$23-1 \mathrm{~A}$	$121-1-\mathrm{C} 8$
$23-2$	$111-1-\mathrm{A} 18-\mathrm{D}$
$23-2 \mathrm{~A}$	$121-1-\mathrm{A} 18-\mathrm{D}$
$23-3$	$211-1-\mathrm{C} 10-\mathrm{D}$
$23-3 \mathrm{~A}$	$221-1-\mathrm{C} 10-\mathrm{D}$
$23-4$	$211-1-\mathrm{A} 20-\mathrm{D}$
$23-4 \mathrm{~A}$	$221-1-\mathrm{A} 20-\mathrm{D}$

GLOSSARY OF TERMS

Input and Output Terms

Output Voltage

(e) The voltage between the wiper terminal and the designated reference point. Unless otherwise specified, the designated reference point is the CCW terminal (See 3.1).

Figure 1
Circuit and Travel Diagram

Output Ratio

(e/E) The ratio of the output voltage to the designated input reference voltage. Unless otherwise specified, the reference voltage is the total applied voltage.

Rotation and Translation

Total Mechanical Travel

The total travel of the shaft between integral stops, under the specified stop load. In potentiometers without stops, the mechanical travel is continuous.

Mechanical Overtravel - Wirewound

The shaft travel between each End Point (or Theoretical End Point for Absolute Conformity or Linearity units) and its adjacent corresponding limit of Total Mechanical Travel.

Mechanical Overtravel

The shaft travel between each Theoretical End Point and its adjacent corresponding limit of Total Mechanical Travel.

Backlash

The maximum difference in shaft position that occurs when the shaft is moved to the same actual Output Ratio point from opposite directions.

Theoretical Electrical Travel

The specified shaft travel over which the theoretical function characteristic extends between defined Output Ratio limits, as determined from the Index Point.

Electrical Overtravel - Nonwirewound

The shaft travel over which there is continuity between the wiper terminal and the resistance element beyond each end of the Theoretical Electrical Travel.

Electrical Continuity Travel

The total travel of the shaft over which electrical continuity is maintained between the wiper and the resistance element.

Tap Location

The position of a tap relative to some reference. This is commonly expressed in terms of an Output Ration and/or a shaft position. When a shaft position is specified, the Tap Location is the center of the Effective Tap Width.

Resistance

End Resistance

The resistance measured between the wiper terminal and an end terminal with the shaft positioned at the corresponding End Point.

Temperature Coefficient Of Resistance

The unit change in resistance per degree celsius change from a reference temperature, expressed in parts per million per degree celsius as follows:

$$
T . C .=\frac{R_{2}-R_{1}}{R_{1}\left(T_{2}-T_{1}\right)} \times 106
$$

Where:
R1 = Resistance at reference temperature in ohms.
R2 $=$ Resistance at test temperature in ohms
T1 = Reference temperature in degrees celsius.
T2 $=$ Test temperature in degrees celsius.

Conformity and Linearity

Linearity

A specific type of conformity where the theoretical function characteristic is a straight line.

Mathematically:

$$
\frac{e}{E}=f(W) \pm C=A(W)+B \pm C
$$

Where:
A is the given slope; B is given intercept at $\mathrm{W}=0$.
W = Angle or slope

Absolute Linearity

The maximum deviation of the actual function characteristic from a fully defined straight reference line. It is expressed as a percentage of the Total Applied Voltage and measured over the Theoretical Electrical Travel. An Index Point on the actual output is required.

The straight reference line may be fully defined by specifying the low and high theoretical end Output Rations separated by the Theoretical Electrical Travel. Unless otherwise specified, these end Output Rations are 0.0 and 1.0 respectively.

Mathematically:

$$
\frac{e}{E}=A\left(W / W_{T}\right)+B \pm C
$$

Where:

A is the given slope; B is given intercept at $\mathrm{W}=0$.
Unless otherwise specified: $\mathrm{A}-1 ; \mathrm{B}=0$

Figure 2

Independent Linearity

The maximum deviation, expressed as a percent of the Total Applied Voltage, of the actual function characteristic from a straight reference line with its slope and position chosen to minimize deviations over the Actual Electrical Travel, or any specified portion thereof.

Note: End Voltage requirements, when specified, will limit the slope and position of the reference line.

Mathematically:

$$
\frac{\mathrm{e}}{\mathrm{E}}=\mathrm{P}\left(\mathrm{~W} / \mathrm{W}_{\mathrm{A}}\right)+\mathrm{Q} \pm \mathrm{C}
$$

Where:
P is unspecified slope; Q is unspecified intercept at $W=0$. And both are chosen to minimize C but are limited by the End Voltage requirements.

Figure 3 Independent Linearity

Electrical Characteristics

Noise

Any spurious variation in the electrical output not present in the input, defined quantitatively in terms of an equivalent parasitic, transient resistance in ohms, appearing between the contact and the resistance element when the shaft is rotated or translated. The Equivalent Noise Resistance is defined independently of the resolution, the functional characteristics, and the total travel. The magnitude of the Equivalent Noise Resistance is the maximum departure from a specified reference line. The wiper of the potentiometer is required to be excited by a specified current and moved at a specified speed.

Output Smoothness (Non-wirewound Potentiometers Only)

 Output Smoothness is a measurement of any spurious variation in the electrical output not present in the input. It is expressed as a percentage of the Total Applied Voltage and measured for specified travel increments over the Theoretical Electrical Travel. Output Smoothness includes effects of contact resistance variations, resolution, and other micron-nonlinearities in the output.
Resolution

A measure of the sensitivity to which the Output Ratio of the potentiometer may be set.

Dielectric Strength

Ability to withstand under prescribed conditions, a specified potential of a given characteristic between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang without exceeding a specified leakage current value.

Insulation Resistance

The resistance to a specified impressed DC voltage between the terminals of each cup and the exposed conducting surfaces of the potentiometer, or between the terminals of each cup and the terminals of every other cup in the gang, under prescribed conditions.

Power Rating

The maximum power that a potentiometer can dissipate under specified conditions while meeting specified performance requirements.

Power Derating

The modification of the nominal power rating for various considerations such as Load Resistance, Output Slopes, Ganging, nonstandard environmental conditions and other factors.

Life

The number of shaft revolutions or translations obtainable under specific operating conditions and within specified allowable degradations of specific characteristics.

Mechanical Characteristics

Shaft Runout

The eccentricity of the shaft diameter with respect to the rotational axis of the shaft, measured at a specified distance from the end of the shaft. The body of the potentiometer is held fixed and the shaft is rotated with a specified load applied radially to the shaft. The eccentricity is expressed in inches, TIR.

Lateral Runout

The perpendicularity of the mounting surface with respect to the rotational axis of the shaft, measured on the mounting surface at a specified distance from the outside edge of the mounting surface. The shaft is held fixed and the body of the potentiometer is rotated with specified loads applied radially and axially to the body of the pot. The Lateral Runout is expressed in inches.

Shaft Radial Play (single shaft potentiometer)

The total radial excursion of the shaft, measured at a specified distance from the front surface of the unit. A specified radial load is applied alternately in opposite directions at a specified point. Shaft Radial Play is expressed in inches.

Shaft End Play

The total axial excursion of the shaft, measured at the end of the shaft with a specified axial load supplied alternately in opposite directions. Shaft End Play is expressed in inches.

Starting Torque

The maximum moment in the clockwise and counterclockwise directions required to initiate shaft rotation anywhere in the Total Mechanical Travel.

Running Torque

The maximum moment in the clockwise and counterclockwise directions required to sustain uniform shaft rotation at a specified speed throughout the Total Mechanical Travel.

Moment of Inertia

The mass moment of inertia of the rotating elements of the potentiometer about their rotational axis.

Stop Strength

Static Stop Strength

The maximum static load that can be applied to the shaft at each mechanical stop for a specified period of time without permanent change of the stop positions greater than specified.

Dynamic Stop Strength

The inertia load, at a specified shaft velocity and a specified number of impacts, that can be applied to the shaft at each stop without a permanent change of the stop position greater than specified.

Orders

All orders are suPPect to acceptance by State Electronics, E. Hanover, NJ. No order or contract shall be deemed accepted unless and until such acceptance is made in writing by State Electronics.

All agreements are more contingent upon strikes, accidents or causes of delay beyond our control

Prices and Specifications

Prices, quotations, specifications and other terms and all statements appearing in the Company's catalogs and advertisements, and otherwise made by the Company, are suPPect to change without notice. State Electronics reserves the right to make changes in design at any time without incurring any obligation to provide same units previously purchased or to continue to supply discontinued items. The specifications shown in the sales literature are not always the latest version. Certified current specification prints are available upon request.

Unless specifically provided in writing, prices quoted are based upon manufacture of quantities and types originally specified and are suPPect to revision when interpretation or engineering changes are initiated by the customer. Quoted prices are based upon present cost of materials and labor and are suPPect to change without notice.

We are not responsible for typographical errors made in any of our publications or for stenographic or clerical errors made in preparations of quotations, all such errors are suPPect to correction.

Delivery

Delivery promise is based on our best estimate of the date material will be shipped from our factory and we assume no responsibility for losses, damage or consequential damages due to delays.

Authorization

State Electronics does not have any authorized distributors, independent representatives or agents.

State Electronics is an Authorized Distributor for the Sensing and Control Division of Honeywell International.

Terms of Payment

On approved orders, terms are net thirty (30) days from the date of invoice. The Company may at any time, when in its opinion the financial condition of the customer warrants it, either hold or suspend credit. In cases where credit is not established or satisfactory financial information is not available, the terms are cash with order or C.O.D. at the option of the Company. Each shipment will be considered a separate and independent transaction and payment should be made accordingly.

Shipments

All shipments are made F.O.B. shipping point (unless otherwise specified) and packaging for domestic shipment is included in the quoted price. When special domestic or export packaging is specified involving greater expense than is customary, a charge will be made to cover such extra expense. Unless otherwise specified, we will normally use the best, least expensive surface transportation. Reasonable care is exercised in packaging our products for shipment and no responsibility is assumed by the Company for delay, breakage or damage after having made delivery in good order to the carrier. All claims for breakage or damage should be made to the carrier, but will be glad to render all possible assistance in securing satisfactory adjustment of such claims.

Claims and Rejected Material

Claims for defective material must be made within 30-days of the customer's receipt of shipment.
No products may be returned without a return authorization (RMA).

Country of Origin

The 388 / 389, S88 / S89, 70 and S159 series Mod-Pot products are assembled in the United States at our facility located in East Hanover, New Jersey, USA.

Export Information

HARMONIZED TARIFF SCHEDULE (HTS \#) - 8533.31.0000
EXPORT CONTROL CLASSIFICATION \# (ECCN \#) - EAR99

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUPPECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

State Electronics Parts Corp., Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "State Electronics"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. State Electronics makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product.
To the maximum extent permitted by applicable law, State Electronics disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on State Electronics'knowledge of typical requirements that are often placed on State Electronics products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify State Electronics' terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, State Electronics products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the State Electronics product could result in personal injury or death. Customers using or selling State Electronics products not expressly indicated for use in such applications do so at their own risk. Please contact authorized State Electronics personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of State Electronics. Product names and markings noted herein may be trademarks of their respective owners.

03.15.24 ©2024

ISO 9001:2015 and AS9100 THE POTENTIOMETER SPECIALISTS ${ }^{\text {Tm }}$
Updated Mar. 15, 2024

[^0]: Note 1: Push-Pull \& Momentary Push switches must be the last section

